|
from gevent import monkey |
|
monkey.patch_all() |
|
|
|
import nltk |
|
nltk.download('punkt_tab') |
|
|
|
import nltk |
|
nltk.download('punkt_tab') |
|
|
|
import os |
|
from dotenv import load_dotenv |
|
import asyncio |
|
from flask import Flask, request, render_template |
|
from flask_cors import CORS |
|
from flask_socketio import SocketIO, emit, join_room, leave_room |
|
from langchain.chains import create_history_aware_retriever, create_retrieval_chain |
|
from langchain.chains.combine_documents import create_stuff_documents_chain |
|
from langchain_community.chat_message_histories import ChatMessageHistory |
|
from langchain_core.chat_history import BaseChatMessageHistory |
|
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder |
|
from langchain_core.runnables.history import RunnableWithMessageHistory |
|
from pinecone import Pinecone |
|
from pinecone_text.sparse import BM25Encoder |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_community.retrievers import PineconeHybridSearchRetriever |
|
from langchain.retrievers import ContextualCompressionRetriever |
|
from langchain_community.chat_models import ChatPerplexity |
|
from langchain.retrievers.document_compressors import CrossEncoderReranker |
|
from langchain_community.cross_encoders import HuggingFaceCrossEncoder |
|
|
|
|
|
load_dotenv(".env") |
|
USER_AGENT = os.getenv("USER_AGENT") |
|
GROQ_API_KEY = os.getenv("GROQ_API_KEY") |
|
SECRET_KEY = os.getenv("SECRET_KEY") |
|
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY") |
|
SESSION_ID_DEFAULT = "abc123" |
|
|
|
|
|
os.environ['USER_AGENT'] = USER_AGENT |
|
os.environ["GROQ_API_KEY"] = GROQ_API_KEY |
|
os.environ["TOKENIZERS_PARALLELISM"] = 'true' |
|
|
|
|
|
app = Flask(__name__) |
|
CORS(app) |
|
socketio = SocketIO(app, async_mode='gevent', cors_allowed_origins="*") |
|
app.config['SESSION_COOKIE_SECURE'] = True |
|
app.config['SESSION_COOKIE_HTTPONLY'] = True |
|
app.config['SESSION_COOKIE_SAMESITE'] = 'Lax' |
|
app.config['SECRET_KEY'] = SECRET_KEY |
|
|
|
|
|
def initialize_pinecone(index_name: str): |
|
try: |
|
pc = Pinecone(api_key=PINECONE_API_KEY) |
|
return pc.Index(index_name) |
|
except Exception as e: |
|
print(f"Error initializing Pinecone: {e}") |
|
raise |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pinecone_index = initialize_pinecone("updated-mbzuai-policies-17112024") |
|
bm25 = BM25Encoder().load("./mbzuai-policies.json") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
embed_model = HuggingFaceEmbeddings(model_name="jinaai/jina-embeddings-v3", model_kwargs={"trust_remote_code":True}) |
|
retriever = PineconeHybridSearchRetriever( |
|
embeddings=embed_model, |
|
sparse_encoder=bm25, |
|
index=pinecone_index, |
|
top_k=20, |
|
alpha=0.5, |
|
|
|
) |
|
|
|
|
|
|
|
llm = ChatPerplexity(temperature=0, pplx_api_key=GROQ_API_KEY, model="llama-3.1-sonar-large-128k-chat", max_tokens=1024, max_retries=2) |
|
|
|
|
|
|
|
|
|
model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base") |
|
compressor = CrossEncoderReranker(model=model, top_n=20) |
|
|
|
|
|
compression_retriever = ContextualCompressionRetriever( |
|
base_compressor=compressor, base_retriever=retriever |
|
) |
|
|
|
|
|
contextualize_q_system_prompt = """Given a chat history and the latest user question \ |
|
which might reference context in the chat history, formulate a standalone question \ |
|
which can be understood without the chat history. Do NOT answer the question, \ |
|
just reformulate it if needed and otherwise return it as is. |
|
""" |
|
contextualize_q_prompt = ChatPromptTemplate.from_messages( |
|
[ |
|
("system", contextualize_q_system_prompt), |
|
MessagesPlaceholder("chat_history"), |
|
("human", "{input}") |
|
] |
|
) |
|
history_aware_retriever = create_history_aware_retriever(llm, compression_retriever, contextualize_q_prompt) |
|
|
|
|
|
qa_system_prompt = """You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively. \ |
|
If you don't know the answer, simply state that you don't know. \ |
|
Your answer should be in {language} language. \ |
|
Provide answers in proper HTML format and keep them concise. \ |
|
|
|
When responding to queries, follow these guidelines: \ |
|
|
|
1. Provide Clear Answers: \ |
|
- Based on the language of the question, you have to answer in that language. E.g. if the question is in English language then answer in the English language or if the question is in Arabic language then you should answer in Arabic language. / |
|
- Ensure the response directly addresses the query with accurate and relevant information.\ |
|
|
|
2. Include Detailed References: \ |
|
- Links to Sources: Include URLs to credible sources where users can verify information or explore further. \ |
|
- Reference Sites: Mention specific websites or platforms that offer additional information. \ |
|
- Downloadable Materials: Provide links to any relevant downloadable resources if applicable. \ |
|
|
|
3. Formatting for Readability: \ |
|
- The answer should be in a proper HTML format with appropriate tags. \ |
|
- For arabic language response align the text to right and convert numbers also. |
|
- Double check if the language of answer is correct or not. |
|
- Use bullet points or numbered lists where applicable to present information clearly. \ |
|
- Highlight key details using bold or italics. \ |
|
- Provide proper and meaningful abbreviations for urls. Do not include naked urls. \ |
|
|
|
4. Organize Content Logically: \ |
|
- Structure the content in a logical order, ensuring easy navigation and understanding for the user. \ |
|
|
|
{context} |
|
""" |
|
qa_prompt = ChatPromptTemplate.from_messages( |
|
[ |
|
("system", qa_system_prompt), |
|
MessagesPlaceholder("chat_history"), |
|
("human", "{input}") |
|
] |
|
) |
|
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt) |
|
|
|
|
|
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain) |
|
|
|
|
|
store = {} |
|
|
|
def clean_temporary_data(): |
|
store.clear() |
|
|
|
def get_session_history(session_id: str) -> BaseChatMessageHistory: |
|
if session_id not in store: |
|
store[session_id] = ChatMessageHistory() |
|
return store[session_id] |
|
|
|
|
|
conversational_rag_chain = RunnableWithMessageHistory( |
|
rag_chain, |
|
get_session_history, |
|
input_messages_key="input", |
|
history_messages_key="chat_history", |
|
language_message_key="language", |
|
output_messages_key="answer", |
|
) |
|
|
|
|
|
@socketio.on('connect') |
|
def handle_connect(): |
|
print(f"Client connected: {request.sid}") |
|
emit('connection_response', {'message': 'Connected successfully.'}) |
|
|
|
|
|
@socketio.on('disconnect') |
|
def handle_disconnect(): |
|
print(f"Client disconnected: {request.sid}") |
|
clean_temporary_data() |
|
|
|
|
|
@socketio.on('message') |
|
def handle_message(data): |
|
question = data.get('question') |
|
language = data.get('language') |
|
if "en" in language: |
|
language = "English" |
|
else: |
|
language = "Arabic" |
|
session_id = data.get('session_id', SESSION_ID_DEFAULT) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
response = conversational_rag_chain.invoke({"input": question, 'language': language}, config={"configurable": {"session_id": session_id}}) |
|
emit('response', response, room=request.sid) |
|
except Exception as e: |
|
print(f"Error during message handling: {e}") |
|
emit('response', "An error occurred while processing your request." + str(e), room=request.sid) |
|
|
|
|
|
|
|
@app.route("/") |
|
def index_view(): |
|
return render_template('chat.html') |
|
|
|
|
|
if __name__ == '__main__': |
|
socketio.run(app, debug=True) |
|
|