|
import os |
|
from dotenv import load_dotenv |
|
load_dotenv(".env") |
|
|
|
os.environ['USER_AGENT'] = os.getenv("USER_AGENT") |
|
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY") |
|
os.environ["TOKENIZERS_PARALLELISM"]='true' |
|
|
|
from langchain.chains import create_history_aware_retriever, create_retrieval_chain |
|
from langchain.chains.combine_documents import create_stuff_documents_chain |
|
from langchain_community.chat_message_histories import ChatMessageHistory |
|
from langchain_community.document_loaders import WebBaseLoader |
|
from langchain_core.chat_history import BaseChatMessageHistory |
|
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder |
|
from langchain_core.runnables.history import RunnableWithMessageHistory |
|
|
|
from pinecone import Pinecone |
|
from pinecone_text.sparse import BM25Encoder |
|
|
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_community.retrievers import PineconeHybridSearchRetriever |
|
|
|
from langchain_groq import ChatGroq |
|
|
|
from flask import Flask, request, render_template |
|
from flask_cors import CORS |
|
from flask_socketio import SocketIO, emit |
|
|
|
app = Flask(__name__) |
|
CORS(app) |
|
socketio = SocketIO(app, cors_allowed_origins="*") |
|
app.config['SESSION_COOKIE_SECURE'] = True |
|
app.config['SESSION_COOKIE_HTTPONLY'] = True |
|
app.config['SESSION_COOKIE_SAMESITE'] = 'Lax' |
|
app.config['SECRET_KEY'] = os.getenv('SECRET_KEY') |
|
|
|
try: |
|
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY")) |
|
index_name = "traveler-demo-website-vectorstore" |
|
|
|
pinecone_index = pc.Index(index_name) |
|
except: |
|
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY")) |
|
index_name = "traveler-demo-website-vectorstore" |
|
|
|
pinecone_index = pc.Index(index_name) |
|
|
|
bm25 = BM25Encoder().load("bm25_traveler_website.json") |
|
|
|
embed_model = HuggingFaceEmbeddings(model_name="Alibaba-NLP/gte-large-en-v1.5", model_kwargs={"trust_remote_code":True}) |
|
|
|
retriever = PineconeHybridSearchRetriever( |
|
embeddings=embed_model, |
|
sparse_encoder=bm25, |
|
index=pinecone_index, |
|
top_k=20, |
|
alpha=0.5, |
|
) |
|
|
|
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.1, max_tokens=1024, max_retries=2) |
|
|
|
|
|
contextualize_q_system_prompt = """Given a chat history and the latest user question \ |
|
which might reference context in the chat history, formulate a standalone question \ |
|
which can be understood without the chat history. Do NOT answer the question, \ |
|
just reformulate it if needed and otherwise return it as is. |
|
""" |
|
contextualize_q_prompt = ChatPromptTemplate.from_messages( |
|
[ |
|
("system", contextualize_q_system_prompt), |
|
MessagesPlaceholder("chat_history"), |
|
("human", "{input}") |
|
] |
|
) |
|
|
|
history_aware_retriever = create_history_aware_retriever( |
|
llm, retriever, contextualize_q_prompt |
|
) |
|
|
|
|
|
qa_system_prompt = """You are a highly skilled information retrieval assistant. Use the following pieces of retrieved context to answer the question. \ |
|
Provide links to sources provided in the answer. \ |
|
If you don't know the answer, just say that you don't know. \ |
|
Do not give extra long answers. \ |
|
When responding to queries, your responses should be comprehensive and well-organized. For each response: \ |
|
|
|
1. Provide Clear Answers \ |
|
|
|
2. Include Detailed References: \ |
|
- Include links to sources and any links or sites where there is a mentioned in the answer. |
|
- Links to Sources: Provide URLs to credible sources where users can verify the information or explore further. \ |
|
- Downloadable Materials: Include links to any relevant downloadable resources if applicable. \ |
|
- Reference Sites: Mention specific websites or platforms that offer additional information. \ |
|
|
|
3. Formatting for Readability: \ |
|
- Bullet Points or Lists: Where applicable, use bullet points or numbered lists to present information clearly. \ |
|
- Emphasize Important Information: Use bold or italics to highlight key details. \ |
|
|
|
4. Organize Content Logically \ |
|
|
|
Do not include anything about context in the answer. \ |
|
|
|
{context} |
|
""" |
|
qa_prompt = ChatPromptTemplate.from_messages( |
|
[ |
|
("system", qa_system_prompt), |
|
MessagesPlaceholder("chat_history"), |
|
("human", "{input}") |
|
] |
|
) |
|
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt) |
|
|
|
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain) |
|
|
|
|
|
store = {} |
|
|
|
def clean_temporary_data(): |
|
store = {} |
|
|
|
def get_session_history(session_id: str) -> BaseChatMessageHistory: |
|
if session_id not in store: |
|
store[session_id] = ChatMessageHistory() |
|
return store[session_id] |
|
|
|
|
|
conversational_rag_chain = RunnableWithMessageHistory( |
|
rag_chain, |
|
get_session_history, |
|
input_messages_key="input", |
|
history_messages_key="chat_history", |
|
output_messages_key="answer", |
|
) |
|
|
|
|
|
@socketio.on('message') |
|
def handle_message(data): |
|
question = data.get('question') |
|
session_id = data.get('session_id', 'abc123') |
|
chain = conversational_rag_chain.pick("answer") |
|
|
|
try: |
|
for chunk in chain.stream( |
|
{"input": question}, |
|
config={ |
|
"configurable": {"session_id": "abc123"} |
|
}, |
|
): |
|
emit('response', chunk, room=request.sid) |
|
except: |
|
for chunk in chain.stream( |
|
{"input": question}, |
|
config={ |
|
"configurable": {"session_id": "abc123"} |
|
}, |
|
): |
|
emit('response', chunk, room=request.sid) |
|
|
|
app.route("/") |
|
def index_view(): |
|
render_template('chat.html') |
|
|
|
if __name__ == '__main__': |
|
socketio.run(app, debug=True) |
|
|