Rodrigo_Cobo
commited on
Commit
·
61d09e6
1
Parent(s):
a1be538
added depth estimation
Browse files
app.py
CHANGED
@@ -1,19 +1,63 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
def update(slider, img):
|
5 |
|
6 |
if not os.path.exists('temp'):
|
7 |
os.system('mkdir temp')
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
return f'temp/image.jpg'
|
12 |
|
13 |
with gr.Blocks() as demo:
|
14 |
gr.Markdown("Start typing below and then click **Run** to see the output.")
|
15 |
inp = [gr.Slider(1,15, default = 2, label='StepCycles',step= 1)]
|
16 |
-
|
17 |
with gr.Row():
|
18 |
inp.append(gr.Image(type="pil", label="Input"))
|
19 |
out = gr.Image(type="file", label="Output")
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
import urllib.request
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
|
10 |
def update(slider, img):
|
11 |
|
12 |
if not os.path.exists('temp'):
|
13 |
os.system('mkdir temp')
|
14 |
|
15 |
+
filename = "temp/image.jpg"
|
16 |
+
|
17 |
+
img.save(filename, "JPEG")
|
18 |
+
|
19 |
+
model_type = "DPT_Hybrid"
|
20 |
+
midas = torch.hub.load("intel-isl/MiDaS", model_type)
|
21 |
+
|
22 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
23 |
+
midas.to(device)
|
24 |
+
midas.eval()
|
25 |
+
|
26 |
+
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
27 |
+
|
28 |
+
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
|
29 |
+
transform = midas_transforms.dpt_transform
|
30 |
+
else:
|
31 |
+
transform = midas_transforms.small_transform
|
32 |
+
|
33 |
+
img = cv2.imread(filename)
|
34 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
35 |
+
|
36 |
+
input_batch = transform(img).to(device)
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
prediction = midas(input_batch)
|
40 |
+
|
41 |
+
prediction = torch.nn.functional.interpolate(
|
42 |
+
prediction.unsqueeze(1),
|
43 |
+
size=img.shape[:2],
|
44 |
+
mode="bicubic",
|
45 |
+
align_corners=False,
|
46 |
+
).squeeze()
|
47 |
+
|
48 |
+
output = prediction.cpu().numpy()
|
49 |
+
|
50 |
+
out_im = Image.fromarray(output)
|
51 |
+
out_im.save("temp/image_depth.jpg", "JPEG")
|
52 |
+
|
53 |
+
return f'temp/image_depth.jpg'
|
54 |
+
|
55 |
|
|
|
56 |
|
57 |
with gr.Blocks() as demo:
|
58 |
gr.Markdown("Start typing below and then click **Run** to see the output.")
|
59 |
inp = [gr.Slider(1,15, default = 2, label='StepCycles',step= 1)]
|
60 |
+
|
61 |
with gr.Row():
|
62 |
inp.append(gr.Image(type="pil", label="Input"))
|
63 |
out = gr.Image(type="file", label="Output")
|