import os, gzip, torch import torch.nn as nn import numpy as np import scipy.misc import imageio import matplotlib.pyplot as plt from PIL import Image from torchvision import datasets, transforms import visdom import random def save_wiggle(images, rows=1, name="test"): width = images[0].shape[1] height = images[0].shape[2] columns = int(len(images)/rows) rows = int(rows) margin = 4 total_width = (width + margin) * columns total_height = (height + margin) * rows new_im = Image.new('RGB', (total_width, total_height)) transToPil = transforms.ToPILImage() x_offset = 3 y_offset = 3 for y in range(rows): for x in range(columns): im = images[x+y*columns] im = transToPil((im+1)/2) new_im.paste(im, (x_offset, y_offset)) x_offset += width + margin x_offset = 3 y_offset += height + margin new_im.save('./WiggleResults/' + name + '.jpg') def load_mnist(dataset): data_dir = os.path.join("./data", dataset) def extract_data(filename, num_data, head_size, data_size): with gzip.open(filename) as bytestream: bytestream.read(head_size) buf = bytestream.read(data_size * num_data) data = np.frombuffer(buf, dtype=np.uint8).astype(np.float) return data data = extract_data(data_dir + '/train-images-idx3-ubyte.gz', 60000, 16, 28 * 28) trX = data.reshape((60000, 28, 28, 1)) data = extract_data(data_dir + '/train-labels-idx1-ubyte.gz', 60000, 8, 1) trY = data.reshape((60000)) data = extract_data(data_dir + '/t10k-images-idx3-ubyte.gz', 10000, 16, 28 * 28) teX = data.reshape((10000, 28, 28, 1)) data = extract_data(data_dir + '/t10k-labels-idx1-ubyte.gz', 10000, 8, 1) teY = data.reshape((10000)) trY = np.asarray(trY).astype(np.int) teY = np.asarray(teY) X = np.concatenate((trX, teX), axis=0) y = np.concatenate((trY, teY), axis=0).astype(np.int) seed = 547 np.random.seed(seed) np.random.shuffle(X) np.random.seed(seed) np.random.shuffle(y) y_vec = np.zeros((len(y), 10), dtype=np.float) for i, label in enumerate(y): y_vec[i, y[i]] = 1 X = X.transpose(0, 3, 1, 2) / 255. # y_vec = y_vec.transpose(0, 3, 1, 2) X = torch.from_numpy(X).type(torch.FloatTensor) y_vec = torch.from_numpy(y_vec).type(torch.FloatTensor) return X, y_vec def load_celebA(dir, transform, batch_size, shuffle): # transform = transforms.Compose([ # transforms.CenterCrop(160), # transform.Scale(64) # transforms.ToTensor(), # transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) # ]) # data_dir = 'data/celebA' # this path depends on your computer dset = datasets.ImageFolder(dir, transform) data_loader = torch.utils.data.DataLoader(dset, batch_size, shuffle) return data_loader def print_network(net): num_params = 0 for param in net.parameters(): num_params += param.numel() print(net) print('Total number of parameters: %d' % num_params) def save_images(images, size, image_path): return imsave(images, size, image_path) def imsave(images, size, path): image = np.squeeze(merge(images, size)) return scipy.misc.imsave(path, image) def merge(images, size): #print ("shape", images.shape) h, w = images.shape[1], images.shape[2] if (images.shape[3] in (3,4)): c = images.shape[3] img = np.zeros((h * size[0], w * size[1], c)) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w, :] = image return img elif images.shape[3]== 1: img = np.zeros((h * size[0], w * size[1])) for idx, image in enumerate(images): #print("indez ",idx) i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w] = image[:,:,0] return img else: raise ValueError('in merge(images,size) images parameter ''must have dimensions: HxW or HxWx3 or HxWx4') def generate_animation(path, num): images = [] for e in range(num): img_name = path + '_epoch%04d' % (e+1) + '.png' images.append(imageio.imread(img_name)) imageio.mimsave(path + '_generate_animation.gif', images, fps=5) def loss_plot(hist, path = 'Train_hist.png', model_name = ''): x1 = range(len(hist['D_loss_train'])) x2 = range(len(hist['G_loss_train'])) y1 = hist['D_loss_train'] y2 = hist['G_loss_train'] if (x1 != x2): y1 = [0.0] * (len(y2) - len(y1)) + y1 x1 = x2 plt.plot(x1, y1, label='D_loss_train') plt.plot(x2, y2, label='G_loss_train') plt.xlabel('Iter') plt.ylabel('Loss') plt.legend(loc=4) plt.grid(True) plt.tight_layout() path = os.path.join(path, model_name + '_loss.png') plt.savefig(path) plt.close() def initialize_weights(net): for m in net.modules(): if isinstance(m, nn.Conv2d): m.weight.data.normal_(0, 0.02) m.bias.data.zero_() elif isinstance(m, nn.ConvTranspose2d): m.weight.data.normal_(0, 0.02) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.02) m.bias.data.zero_() class VisdomLinePlotter(object): """Plots to Visdom""" def __init__(self, env_name='main'): self.viz = visdom.Visdom() self.env = env_name self.ini = False self.count = 1 def plot(self, var_name,names, split_name, hist): x = [] y = [] for i, name in enumerate(names): x.append(self.count) y.append(hist[name]) self.count+=1 #x1 = (len(hist['D_loss_' +split_name])) #x2 = (len(hist['G_loss_' +split_name])) #y1 = hist['D_loss_'+split_name] #y2 = hist['G_loss_'+split_name] np.array(x) for i,n in enumerate(names): x[i] = np.arange(1, x[i]+1) if not self.ini: for i, name in enumerate(names): if i == 0: self.win = self.viz.line(X=x[i], Y=np.array(y[i]), env=self.env,name = name,opts=dict( title=var_name + '_'+split_name, showlegend = True )) else: self.viz.line(X=x[i], Y=np.array(y[i]), env=self.env,win=self.win, name=name, update='append') self.ini = True else: x[0] = np.array([x[0][-2], x[0][-1]]) for i,n in enumerate(names): y[i] = np.array([y[i][-2], y[i][-1]]) self.viz.line(X=x[0], Y=np.array(y[i]), env=self.env, win=self.win, name=n, update='append') class VisdomLineTwoPlotter(VisdomLinePlotter): def plot(self, var_name, epoch,names, hist): x1 = epoch y1 = hist[names[0]] y2 = hist[names[1]] y3 = hist[names[2]] y4 = hist[names[3]] #y1 = hist['D_loss_' + split_name] #y2 = hist['G_loss_' + split_name] #y3 = hist['D_loss_' + split_name2] #y4 = hist['G_loss_' + split_name2] #x1 = np.arange(1, x1+1) if not self.ini: self.win = self.viz.line(X=np.array([x1]), Y=np.array(y1), env=self.env,name = names[0],opts=dict( title=var_name, showlegend = True, linecolor = np.array([[0, 0, 255]]) )) self.viz.line(X=np.array([x1]), Y=np.array(y2), env=self.env,win=self.win, name=names[1], update='append', opts=dict( linecolor=np.array([[255, 153, 51]]) )) self.viz.line(X=np.array([x1]), Y=np.array(y3), env=self.env, win=self.win, name=names[2], update='append', opts=dict( linecolor=np.array([[0, 51, 153]]) )) self.viz.line(X=np.array([x1]), Y=np.array(y4), env=self.env, win=self.win, name=names[3], update='append', opts=dict( linecolor=np.array([[204, 51, 0]]) )) self.ini = True else: y4 = np.array([y4[-2], y4[-1]]) y3 = np.array([y3[-2], y3[-1]]) y2 = np.array([y2[-2], y2[-1]]) y1 = np.array([y1[-2], y1[-1]]) x1 = np.array([x1 - 1, x1]) self.viz.line(X=x1, Y=np.array(y1), env=self.env, win=self.win, name=names[0], update='append') self.viz.line(X=x1, Y=np.array(y2), env=self.env, win=self.win, name=names[1], update='append') self.viz.line(X=x1, Y=np.array(y3), env=self.env, win=self.win, name=names[2], update='append') self.viz.line(X=x1, Y=np.array(y4), env=self.env, win=self.win, name=names[3], update='append') class VisdomImagePlotter(object): """Plots to Visdom""" def __init__(self, env_name='main'): self.viz = visdom.Visdom() self.env = env_name def plot(self, epoch,images,rows): list_images = [] for image in images: #transforms.ToPILImage()(image) image = (image + 1)/2 image = image.detach().numpy() * 255 list_images.append(image) self.viz.images( list_images, padding=2, nrow =rows, opts=dict(title="epoch: " + str(epoch)), env=self.env ) def augmentData(x,y, randomness = 1, percent_noise = 0.1): """ :param x: image X :param y: image Y :param randomness: Value of randomness (between 1 and 0) :return: data x,y augmented """ sampleX = torch.tensor([]) sampleY = torch.tensor([]) for aumX, aumY in zip(x,y): # Preparing to get image # transforms.ToPILImage()(pil_to_tensor.squeeze_(0)) #percent_noise = percent_noise #noise = torch.randn(aumX.shape) #aumX = noise * percent_noise + aumX * (1 - percent_noise) #aumY = noise * percent_noise + aumY * (1 - percent_noise) aumX = (aumX + 1) / 2 aumY = (aumY + 1) / 2 imgX = transforms.ToPILImage()(aumX) imgY = transforms.ToPILImage()(aumY) # Values for augmentation # brighness = random.uniform(0.7, 1.2)* randomness + (1-randomness) saturation = random.uniform(0, 2)* randomness + (1-randomness) contrast = random.uniform(0.4, 2)* randomness + (1-randomness) gamma = random.uniform(0.7, 1.3)* randomness + (1-randomness) hue = random.uniform(-0.3, 0.3)* randomness #0.01 imgX = transforms.functional.adjust_gamma(imgX, gamma) imgX = transforms.functional.adjust_brightness(imgX, brighness) imgX = transforms.functional.adjust_contrast(imgX, contrast) imgX = transforms.functional.adjust_saturation(imgX, saturation) imgX = transforms.functional.adjust_hue(imgX, hue) #imgX.show() imgY = transforms.functional.adjust_gamma(imgY, gamma) imgY = transforms.functional.adjust_brightness(imgY, brighness) imgY = transforms.functional.adjust_contrast(imgY, contrast) imgY = transforms.functional.adjust_saturation(imgY, saturation) imgY = transforms.functional.adjust_hue(imgY, hue) #imgY.show() sx = transforms.ToTensor()(imgX) sx = (sx * 2)-1 sy = transforms.ToTensor()(imgY) sy = (sy * 2)-1 sampleX = torch.cat((sampleX, sx.unsqueeze_(0)), 0) sampleY = torch.cat((sampleY, sy.unsqueeze_(0)), 0) return sampleX,sampleY def RGBtoL (x): return x[:,0,:,:].unsqueeze(0).transpose(0,1) def LtoRGB (x): return x.repeat(1, 3, 1, 1)