File size: 14,245 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
from abc import ABCMeta, abstractmethod
from collections import OrderedDict

import mmcv
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
from mmcv.runner import auto_fp16
from mmcv.utils import print_log

from mmdet.core.visualization import imshow_det_bboxes
from mmdet.utils import get_root_logger


class BaseDetector(nn.Module, metaclass=ABCMeta):
    """Base class for detectors."""

    def __init__(self):
        super(BaseDetector, self).__init__()
        self.fp16_enabled = False

    @property
    def with_neck(self):
        """bool: whether the detector has a neck"""
        return hasattr(self, 'neck') and self.neck is not None

    # TODO: these properties need to be carefully handled
    # for both single stage & two stage detectors
    @property
    def with_shared_head(self):
        """bool: whether the detector has a shared head in the RoI Head"""
        return hasattr(self, 'roi_head') and self.roi_head.with_shared_head

    @property
    def with_bbox(self):
        """bool: whether the detector has a bbox head"""
        return ((hasattr(self, 'roi_head') and self.roi_head.with_bbox)
                or (hasattr(self, 'bbox_head') and self.bbox_head is not None))

    @property
    def with_mask(self):
        """bool: whether the detector has a mask head"""
        return ((hasattr(self, 'roi_head') and self.roi_head.with_mask)
                or (hasattr(self, 'mask_head') and self.mask_head is not None))

    @abstractmethod
    def extract_feat(self, imgs):
        """Extract features from images."""
        pass

    def extract_feats(self, imgs):
        """Extract features from multiple images.

        Args:
            imgs (list[torch.Tensor]): A list of images. The images are
                augmented from the same image but in different ways.

        Returns:
            list[torch.Tensor]: Features of different images
        """
        assert isinstance(imgs, list)
        return [self.extract_feat(img) for img in imgs]

    def forward_train(self, imgs, img_metas, **kwargs):
        """
        Args:
            img (list[Tensor]): List of tensors of shape (1, C, H, W).
                Typically these should be mean centered and std scaled.
            img_metas (list[dict]): List of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys, see
                :class:`mmdet.datasets.pipelines.Collect`.
            kwargs (keyword arguments): Specific to concrete implementation.
        """
        # NOTE the batched image size information may be useful, e.g.
        # in DETR, this is needed for the construction of masks, which is
        # then used for the transformer_head.
        batch_input_shape = tuple(imgs[0].size()[-2:])
        for img_meta in img_metas:
            img_meta['batch_input_shape'] = batch_input_shape

    async def async_simple_test(self, img, img_metas, **kwargs):
        raise NotImplementedError

    @abstractmethod
    def simple_test(self, img, img_metas, **kwargs):
        pass

    @abstractmethod
    def aug_test(self, imgs, img_metas, **kwargs):
        """Test function with test time augmentation."""
        pass

    def init_weights(self, pretrained=None):
        """Initialize the weights in detector.

        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """
        if pretrained is not None:
            logger = get_root_logger()
            print_log(f'load model from: {pretrained}', logger=logger)

    async def aforward_test(self, *, img, img_metas, **kwargs):
        for var, name in [(img, 'img'), (img_metas, 'img_metas')]:
            if not isinstance(var, list):
                raise TypeError(f'{name} must be a list, but got {type(var)}')

        num_augs = len(img)
        if num_augs != len(img_metas):
            raise ValueError(f'num of augmentations ({len(img)}) '
                             f'!= num of image metas ({len(img_metas)})')
        # TODO: remove the restriction of samples_per_gpu == 1 when prepared
        samples_per_gpu = img[0].size(0)
        assert samples_per_gpu == 1

        if num_augs == 1:
            return await self.async_simple_test(img[0], img_metas[0], **kwargs)
        else:
            raise NotImplementedError

    def forward_test(self, imgs, img_metas, **kwargs):
        """
        Args:
            imgs (List[Tensor]): the outer list indicates test-time
                augmentations and inner Tensor should have a shape NxCxHxW,
                which contains all images in the batch.
            img_metas (List[List[dict]]): the outer list indicates test-time
                augs (multiscale, flip, etc.) and the inner list indicates
                images in a batch.
        """
        for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]:
            if not isinstance(var, list):
                raise TypeError(f'{name} must be a list, but got {type(var)}')

        num_augs = len(imgs)
        if num_augs != len(img_metas):
            raise ValueError(f'num of augmentations ({len(imgs)}) '
                             f'!= num of image meta ({len(img_metas)})')

        # NOTE the batched image size information may be useful, e.g.
        # in DETR, this is needed for the construction of masks, which is
        # then used for the transformer_head.
        for img, img_meta in zip(imgs, img_metas):
            batch_size = len(img_meta)
            for img_id in range(batch_size):
                img_meta[img_id]['batch_input_shape'] = tuple(img.size()[-2:])

        if num_augs == 1:
            # proposals (List[List[Tensor]]): the outer list indicates
            # test-time augs (multiscale, flip, etc.) and the inner list
            # indicates images in a batch.
            # The Tensor should have a shape Px4, where P is the number of
            # proposals.
            if 'proposals' in kwargs:
                kwargs['proposals'] = kwargs['proposals'][0]
            return self.simple_test(imgs[0], img_metas[0], **kwargs)
        else:
            assert imgs[0].size(0) == 1, 'aug test does not support ' \
                                         'inference with batch size ' \
                                         f'{imgs[0].size(0)}'
            # TODO: support test augmentation for predefined proposals
            assert 'proposals' not in kwargs
            return self.aug_test(imgs, img_metas, **kwargs)

    @auto_fp16(apply_to=('img', ))
    def forward(self, img, img_metas, return_loss=True, **kwargs):
        """Calls either :func:`forward_train` or :func:`forward_test` depending
        on whether ``return_loss`` is ``True``.

        Note this setting will change the expected inputs. When
        ``return_loss=True``, img and img_meta are single-nested (i.e. Tensor
        and List[dict]), and when ``resturn_loss=False``, img and img_meta
        should be double nested (i.e.  List[Tensor], List[List[dict]]), with
        the outer list indicating test time augmentations.
        """
        if return_loss:
            return self.forward_train(img, img_metas, **kwargs)
        else:
            return self.forward_test(img, img_metas, **kwargs)

    def _parse_losses(self, losses):
        """Parse the raw outputs (losses) of the network.

        Args:
            losses (dict): Raw output of the network, which usually contain
                losses and other necessary infomation.

        Returns:
            tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor \
                which may be a weighted sum of all losses, log_vars contains \
                all the variables to be sent to the logger.
        """
        log_vars = OrderedDict()
        for loss_name, loss_value in losses.items():
            if isinstance(loss_value, torch.Tensor):
                log_vars[loss_name] = loss_value.mean()
            elif isinstance(loss_value, list):
                log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
            else:
                raise TypeError(
                    f'{loss_name} is not a tensor or list of tensors')

        loss = sum(_value for _key, _value in log_vars.items()
                   if 'loss' in _key)

        log_vars['loss'] = loss
        for loss_name, loss_value in log_vars.items():
            # reduce loss when distributed training
            if dist.is_available() and dist.is_initialized():
                loss_value = loss_value.data.clone()
                dist.all_reduce(loss_value.div_(dist.get_world_size()))
            log_vars[loss_name] = loss_value.item()

        return loss, log_vars

    def train_step(self, data, optimizer):
        """The iteration step during training.

        This method defines an iteration step during training, except for the
        back propagation and optimizer updating, which are done in an optimizer
        hook. Note that in some complicated cases or models, the whole process
        including back propagation and optimizer updating is also defined in
        this method, such as GAN.

        Args:
            data (dict): The output of dataloader.
            optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of
                runner is passed to ``train_step()``. This argument is unused
                and reserved.

        Returns:
            dict: It should contain at least 3 keys: ``loss``, ``log_vars``, \
                ``num_samples``.

                - ``loss`` is a tensor for back propagation, which can be a \
                weighted sum of multiple losses.
                - ``log_vars`` contains all the variables to be sent to the
                logger.
                - ``num_samples`` indicates the batch size (when the model is \
                DDP, it means the batch size on each GPU), which is used for \
                averaging the logs.
        """
        losses = self(**data)
        loss, log_vars = self._parse_losses(losses)

        outputs = dict(
            loss=loss, log_vars=log_vars, num_samples=len(data['img_metas']))

        return outputs

    def val_step(self, data, optimizer):
        """The iteration step during validation.

        This method shares the same signature as :func:`train_step`, but used
        during val epochs. Note that the evaluation after training epochs is
        not implemented with this method, but an evaluation hook.
        """
        losses = self(**data)
        loss, log_vars = self._parse_losses(losses)

        outputs = dict(
            loss=loss, log_vars=log_vars, num_samples=len(data['img_metas']))

        return outputs

    def show_result(self,
                    img,
                    result,
                    score_thr=0.3,
                    bbox_color=(72, 101, 241),
                    text_color=(72, 101, 241),
                    mask_color=None,
                    thickness=2,
                    font_size=13,
                    win_name='',
                    show=False,
                    wait_time=0,
                    out_file=None):
        """Draw `result` over `img`.

        Args:
            img (str or Tensor): The image to be displayed.
            result (Tensor or tuple): The results to draw over `img`
                bbox_result or (bbox_result, segm_result).
            score_thr (float, optional): Minimum score of bboxes to be shown.
                Default: 0.3.
            bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
               The tuple of color should be in BGR order. Default: 'green'
            text_color (str or tuple(int) or :obj:`Color`):Color of texts.
               The tuple of color should be in BGR order. Default: 'green'
            mask_color (None or str or tuple(int) or :obj:`Color`):
               Color of masks. The tuple of color should be in BGR order.
               Default: None
            thickness (int): Thickness of lines. Default: 2
            font_size (int): Font size of texts. Default: 13
            win_name (str): The window name. Default: ''
            wait_time (float): Value of waitKey param.
                Default: 0.
            show (bool): Whether to show the image.
                Default: False.
            out_file (str or None): The filename to write the image.
                Default: None.

        Returns:
            img (Tensor): Only if not `show` or `out_file`
        """
        img = mmcv.imread(img)
        img = img.copy()
        if isinstance(result, tuple):
            bbox_result, segm_result = result
            if isinstance(segm_result, tuple):
                segm_result = segm_result[0]  # ms rcnn
        else:
            bbox_result, segm_result = result, None
        bboxes = np.vstack(bbox_result)
        labels = [
            np.full(bbox.shape[0], i, dtype=np.int32)
            for i, bbox in enumerate(bbox_result)
        ]
        labels = np.concatenate(labels)
        # draw segmentation masks
        segms = None
        if segm_result is not None and len(labels) > 0:  # non empty
            segms = mmcv.concat_list(segm_result)
            if isinstance(segms[0], torch.Tensor):
                segms = torch.stack(segms, dim=0).detach().cpu().numpy()
            else:
                segms = np.stack(segms, axis=0)
        # if out_file specified, do not show image in window
        if out_file is not None:
            show = False
        # draw bounding boxes
        img = imshow_det_bboxes(
            img,
            bboxes,
            labels,
            segms,
            class_names=self.CLASSES,
            score_thr=score_thr,
            bbox_color=bbox_color,
            text_color=text_color,
            mask_color=mask_color,
            thickness=thickness,
            font_size=font_size,
            win_name=win_name,
            show=show,
            wait_time=wait_time,
            out_file=out_file)

        if not (show or out_file):
            return img