Robert001's picture
first commit
b334e29
raw
history blame
1.49 kB
'''
* Copyright (c) 2023 Salesforce, Inc.
* All rights reserved.
* SPDX-License-Identifier: Apache License 2.0
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
* By Can Qin
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
* Modified from MMCV repo: From https://github.com/open-mmlab/mmcv
* Copyright (c) OpenMMLab. All rights reserved.
'''
"""Modified from https://github.com/rwightman/pytorch-image-
models/blob/master/timm/models/layers/drop.py."""
import torch
from torch import nn
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of
residual blocks).
Args:
drop_prob (float): Drop rate for paths of model. Dropout rate has
to be between 0 and 1. Default: 0.
"""
def __init__(self, drop_prob=0.):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.keep_prob = 1 - drop_prob
def forward(self, x):
if self.drop_prob == 0. or not self.training:
return x
shape = (x.shape[0], ) + (1, ) * (
x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = self.keep_prob + torch.rand(
shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(self.keep_prob) * random_tensor
return output