Spaces:
Runtime error
Runtime error
''' | |
* Copyright (c) 2023 Salesforce, Inc. | |
* All rights reserved. | |
* SPDX-License-Identifier: Apache License 2.0 | |
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/ | |
* By Can Qin | |
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet | |
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala | |
''' | |
# Openpose | |
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose | |
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose | |
# 3rd Edited by ControlNet | |
import os | |
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" | |
import torch | |
import numpy as np | |
from . import util | |
from .body import Body | |
from .hand import Hand | |
from annotator.util import annotator_ckpts_path | |
body_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/body_pose_model.pth" | |
hand_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/hand_pose_model.pth" | |
class OpenposeDetector: | |
def __init__(self): | |
# body_modelpath = os.path.join(annotator_ckpts_path, "body_pose_model.pth") | |
# hand_modelpath = os.path.join(annotator_ckpts_path, "hand_pose_model.pth") | |
# if not os.path.exists(hand_modelpath): | |
# from basicsr.utils.download_util import load_file_from_url | |
# load_file_from_url(body_model_path, model_dir=annotator_ckpts_path) | |
# load_file_from_url(hand_model_path, model_dir=annotator_ckpts_path) | |
self.body_estimation = Body(body_modelpath) | |
self.hand_estimation = Hand(hand_modelpath) | |
def __call__(self, oriImg, hand=False): | |
oriImg = oriImg[:, :, ::-1].copy() | |
with torch.no_grad(): | |
candidate, subset = self.body_estimation(oriImg) | |
canvas = np.zeros_like(oriImg) | |
canvas = util.draw_bodypose(canvas, candidate, subset) | |
if hand: | |
hands_list = util.handDetect(candidate, subset, oriImg) | |
all_hand_peaks = [] | |
for x, y, w, is_left in hands_list: | |
peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :]) | |
peaks[:, 0] = np.where(peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x) | |
peaks[:, 1] = np.where(peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y) | |
all_hand_peaks.append(peaks) | |
canvas = util.draw_handpose(canvas, all_hand_peaks) | |
return canvas, dict(candidate=candidate.tolist(), subset=subset.tolist()) | |