Spaces:
Runtime error
Runtime error
first commit
Browse files- lib/attention.py +1 -1
- lib/ddpm_multi.py +1 -1
- lib/openaimodel.py +1 -1
- lib/util.py +2 -10
- lib/utils.py +117 -0
lib/attention.py
CHANGED
@@ -18,7 +18,7 @@ from torch import nn, einsum
|
|
18 |
from einops import rearrange, repeat
|
19 |
from typing import Optional, Any
|
20 |
|
21 |
-
from
|
22 |
|
23 |
try:
|
24 |
import xformers
|
|
|
18 |
from einops import rearrange, repeat
|
19 |
from typing import Optional, Any
|
20 |
|
21 |
+
from utils import checkpoint
|
22 |
|
23 |
try:
|
24 |
import xformers
|
lib/ddpm_multi.py
CHANGED
@@ -30,7 +30,7 @@ from torchvision.utils import make_grid
|
|
30 |
from pytorch_lightning.utilities.distributed import rank_zero_only
|
31 |
from omegaconf import ListConfig
|
32 |
|
33 |
-
from
|
34 |
from lib.distributions import normal_kl, DiagonalGaussianDistribution
|
35 |
from lib.autoencoder import IdentityFirstStage, AutoencoderKL
|
36 |
from lib.util import make_beta_schedule, extract_into_tensor, noise_like
|
|
|
30 |
from pytorch_lightning.utilities.distributed import rank_zero_only
|
31 |
from omegaconf import ListConfig
|
32 |
|
33 |
+
from utils import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
34 |
from lib.distributions import normal_kl, DiagonalGaussianDistribution
|
35 |
from lib.autoencoder import IdentityFirstStage, AutoencoderKL
|
36 |
from lib.util import make_beta_schedule, extract_into_tensor, noise_like
|
lib/openaimodel.py
CHANGED
@@ -26,7 +26,7 @@ from lib.util import (
|
|
26 |
timestep_embedding,
|
27 |
)
|
28 |
from attention import SpatialTransformer
|
29 |
-
from
|
30 |
|
31 |
|
32 |
# dummy replace
|
|
|
26 |
timestep_embedding,
|
27 |
)
|
28 |
from attention import SpatialTransformer
|
29 |
+
from utils import exists
|
30 |
|
31 |
|
32 |
# dummy replace
|
lib/util.py
CHANGED
@@ -25,16 +25,8 @@ import torch.nn as nn
|
|
25 |
import numpy as np
|
26 |
from einops import repeat
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
def instantiate_from_config(config):
|
31 |
-
if not "target" in config:
|
32 |
-
if config == '__is_first_stage__':
|
33 |
-
return None
|
34 |
-
elif config == "__is_unconditional__":
|
35 |
-
return None
|
36 |
-
raise KeyError("Expected key `target` to instantiate.")
|
37 |
-
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
38 |
|
39 |
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
40 |
if schedule == "linear":
|
|
|
25 |
import numpy as np
|
26 |
from einops import repeat
|
27 |
|
28 |
+
from utils import instantiate_from_config
|
29 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
32 |
if schedule == "linear":
|
lib/utils.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2023 Salesforce, Inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: Apache License 2.0
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
|
6 |
+
* By Can Qin
|
7 |
+
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
|
8 |
+
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
|
9 |
+
'''
|
10 |
+
|
11 |
+
import os
|
12 |
+
import torch
|
13 |
+
from omegaconf import OmegaConf
|
14 |
+
import importlib
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
|
18 |
+
from inspect import isfunction
|
19 |
+
from PIL import Image, ImageDraw, ImageFont
|
20 |
+
|
21 |
+
|
22 |
+
def log_txt_as_img(wh, xc, size=10):
|
23 |
+
# wh a tuple of (width, height)
|
24 |
+
# xc a list of captions to plot
|
25 |
+
b = len(xc)
|
26 |
+
txts = list()
|
27 |
+
for bi in range(b):
|
28 |
+
txt = Image.new("RGB", wh, color="white")
|
29 |
+
draw = ImageDraw.Draw(txt)
|
30 |
+
font = ImageFont.truetype('font/DejaVuSans.ttf', size=size)
|
31 |
+
nc = int(40 * (wh[0] / 256))
|
32 |
+
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
33 |
+
|
34 |
+
try:
|
35 |
+
draw.text((0, 0), lines, fill="black", font=font)
|
36 |
+
except UnicodeEncodeError:
|
37 |
+
print("Cant encode string for logging. Skipping.")
|
38 |
+
|
39 |
+
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
40 |
+
txts.append(txt)
|
41 |
+
txts = np.stack(txts)
|
42 |
+
txts = torch.tensor(txts)
|
43 |
+
return txts
|
44 |
+
|
45 |
+
|
46 |
+
def ismap(x):
|
47 |
+
if not isinstance(x, torch.Tensor):
|
48 |
+
return False
|
49 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
50 |
+
|
51 |
+
|
52 |
+
def isimage(x):
|
53 |
+
if not isinstance(x,torch.Tensor):
|
54 |
+
return False
|
55 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
56 |
+
|
57 |
+
|
58 |
+
def exists(x):
|
59 |
+
return x is not None
|
60 |
+
|
61 |
+
|
62 |
+
def default(val, d):
|
63 |
+
if exists(val):
|
64 |
+
return val
|
65 |
+
return d() if isfunction(d) else d
|
66 |
+
|
67 |
+
|
68 |
+
def mean_flat(tensor):
|
69 |
+
"""
|
70 |
+
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
71 |
+
Take the mean over all non-batch dimensions.
|
72 |
+
"""
|
73 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
74 |
+
|
75 |
+
def count_params(model, verbose=False):
|
76 |
+
total_params = sum(p.numel() for p in model.parameters())
|
77 |
+
if verbose:
|
78 |
+
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
79 |
+
return total_params
|
80 |
+
|
81 |
+
|
82 |
+
def get_state_dict(d):
|
83 |
+
return d.get('state_dict', d)
|
84 |
+
|
85 |
+
|
86 |
+
def load_state_dict(ckpt_path, location='cpu'):
|
87 |
+
_, extension = os.path.splitext(ckpt_path)
|
88 |
+
if extension.lower() == ".safetensors":
|
89 |
+
import safetensors.torch
|
90 |
+
state_dict = safetensors.torch.load_file(ckpt_path, device=location)
|
91 |
+
else:
|
92 |
+
state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
|
93 |
+
state_dict = get_state_dict(state_dict)
|
94 |
+
print(f'Loaded state_dict from [{ckpt_path}]')
|
95 |
+
return state_dict
|
96 |
+
|
97 |
+
def get_obj_from_str(string, reload=False):
|
98 |
+
module, cls = string.rsplit(".", 1)
|
99 |
+
if reload:
|
100 |
+
module_imp = importlib.import_module(module)
|
101 |
+
importlib.reload(module_imp)
|
102 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
103 |
+
|
104 |
+
def instantiate_from_config(config):
|
105 |
+
if not "target" in config:
|
106 |
+
if config == '__is_first_stage__':
|
107 |
+
return None
|
108 |
+
elif config == "__is_unconditional__":
|
109 |
+
return None
|
110 |
+
raise KeyError("Expected key `target` to instantiate.")
|
111 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
112 |
+
|
113 |
+
def create_model(config_path):
|
114 |
+
config = OmegaConf.load(config_path)
|
115 |
+
model = instantiate_from_config(config.model).cpu()
|
116 |
+
print(f'Loaded model config from [{config_path}]')
|
117 |
+
return model
|