Roberta2024 commited on
Commit
959d70e
1 Parent(s): ec8e07e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -21
app.py CHANGED
@@ -3,50 +3,59 @@ import gradio as gr
3
  import asyncio
4
  from langchain_core.prompts import PromptTemplate
5
  from langchain_community.document_loaders import PyPDFLoader
 
 
 
6
  import torch
7
  from transformers import AutoTokenizer, AutoModelForCausalLM
8
 
 
 
 
9
  # Load Mistral model
10
  model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base"
11
- tokenizer = AutoTokenizer.from_pretrained(model_path)
12
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
13
  dtype = torch.bfloat16
14
- model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
15
 
16
  async def initialize(file_path, question):
17
- prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """
 
 
 
 
 
 
18
  prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
19
-
20
  if os.path.exists(file_path):
21
  pdf_loader = PyPDFLoader(file_path)
22
  pages = pdf_loader.load_and_split()
23
  context = "\n".join(str(page.page_content) for page in pages[:30])
 
 
 
24
 
25
- # Prepare input for Mistral model
26
- input_text = prompt.format(context=context, question=question)
27
- inputs = tokenizer.encode(input_text, return_tensors='pt').to(device)
28
-
29
- # Generate the output
30
  with torch.no_grad():
31
- outputs = model.generate(inputs, max_length=500) # Adjust max_length as needed
 
32
 
33
- # Decode and return the output
34
- answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
35
- return answer
36
  else:
37
  return "Error: Unable to process the document. Please ensure the PDF file is valid."
38
 
39
  # Define Gradio Interface
40
  input_file = gr.File(label="Upload PDF File")
41
  input_question = gr.Textbox(label="Ask about the document")
42
- output_text = gr.Textbox(label="Answer - Mistral Model")
43
 
44
- def pdf_qa(file, question):
45
- if file is None:
46
- return "Please upload a PDF file first."
47
-
48
- loop = asyncio.get_event_loop()
49
- answer = loop.run_until_complete(initialize(file.name, question))
50
  return answer
51
 
52
  # Create Gradio Interface
@@ -54,6 +63,6 @@ gr.Interface(
54
  fn=pdf_qa,
55
  inputs=[input_file, input_question],
56
  outputs=output_text,
57
- title="RAG Knowledge Retrieval using Mistral Model",
58
  description="Upload a PDF file and ask questions about the content."
59
  ).launch()
 
3
  import asyncio
4
  from langchain_core.prompts import PromptTemplate
5
  from langchain_community.document_loaders import PyPDFLoader
6
+ from langchain_google_genai import ChatGoogleGenerativeAI
7
+ import google.generativeai as genai
8
+ from langchain.chains.question_answering import load_qa_chain
9
  import torch
10
  from transformers import AutoTokenizer, AutoModelForCausalLM
11
 
12
+ # Configure Gemini API
13
+ genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
14
+
15
  # Load Mistral model
16
  model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base"
17
+ mistral_tokenizer = AutoTokenizer.from_pretrained(model_path)
18
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
19
  dtype = torch.bfloat16
20
+ mistral_model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
21
 
22
  async def initialize(file_path, question):
23
+ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
24
+ prompt_template = """Answer the question as precise as possible using the provided context. If the answer is
25
+ not contained in the context, say "answer not available in context" \n\n
26
+ Context: \n {context}?\n
27
+ Question: \n {question} \n
28
+ Answer:
29
+ """
30
  prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
31
+
32
  if os.path.exists(file_path):
33
  pdf_loader = PyPDFLoader(file_path)
34
  pages = pdf_loader.load_and_split()
35
  context = "\n".join(str(page.page_content) for page in pages[:30])
36
+ stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
37
+ stuff_answer = await stuff_chain.acall({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True)
38
+ gemini_answer = stuff_answer['output_text']
39
 
40
+ # Use Mistral model for additional text generation
41
+ mistral_prompt = f"Based on this answer: {gemini_answer}\nGenerate a follow-up question:"
42
+ mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(device)
 
 
43
  with torch.no_grad():
44
+ mistral_outputs = mistral_model.generate(mistral_inputs, max_length=50)
45
+ mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True)
46
 
47
+ combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_output}"
48
+ return combined_output
 
49
  else:
50
  return "Error: Unable to process the document. Please ensure the PDF file is valid."
51
 
52
  # Define Gradio Interface
53
  input_file = gr.File(label="Upload PDF File")
54
  input_question = gr.Textbox(label="Ask about the document")
55
+ output_text = gr.Textbox(label="Answer - Combined Gemini and Mistral")
56
 
57
+ async def pdf_qa(file, question):
58
+ answer = await initialize(file.name, question)
 
 
 
 
59
  return answer
60
 
61
  # Create Gradio Interface
 
63
  fn=pdf_qa,
64
  inputs=[input_file, input_question],
65
  outputs=output_text,
66
+ title="RAG Knowledge Retrieval using Gemini API and Mistral Model",
67
  description="Upload a PDF file and ask questions about the content."
68
  ).launch()