Spaces:
Sleeping
Sleeping
Roberta2024
commited on
Commit
•
ae38eb4
1
Parent(s):
99694ff
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import asyncio
|
4 |
+
from langchain_core.prompts import PromptTemplate
|
5 |
+
from langchain_community.document_loaders import PyPDFLoader
|
6 |
+
from langchain.chains.question_answering import load_qa_chain
|
7 |
+
import torch
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
+
|
10 |
+
# Load Mistral model
|
11 |
+
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
13 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
14 |
+
dtype = torch.bfloat16
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
|
16 |
+
|
17 |
+
async def initialize(file_path, question):
|
18 |
+
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """
|
19 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
20 |
+
|
21 |
+
if os.path.exists(file_path):
|
22 |
+
pdf_loader = PyPDFLoader(file_path)
|
23 |
+
pages = pdf_loader.load_and_split()
|
24 |
+
context = "\n".join(str(page.page_content) for page in pages[:30])
|
25 |
+
|
26 |
+
# Prepare input for Mistral model
|
27 |
+
input_text = prompt.format(context=context, question=question)
|
28 |
+
inputs = tokenizer.encode(input_text, return_tensors='pt').to(device)
|
29 |
+
|
30 |
+
# Generate the output
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model.generate(inputs, max_length=500) # Adjust max_length as needed
|
33 |
+
|
34 |
+
# Decode and return the output
|
35 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
36 |
+
return answer
|
37 |
+
else:
|
38 |
+
return "Error: Unable to process the document. Please ensure the PDF file is valid."
|
39 |
+
|
40 |
+
# Define Gradio Interface
|
41 |
+
input_file = gr.File(label="Upload PDF File")
|
42 |
+
input_question = gr.Textbox(label="Ask about the document")
|
43 |
+
output_text = gr.Textbox(label="Answer - Mistral Model")
|
44 |
+
|
45 |
+
async def pdf_qa(file, question):
|
46 |
+
answer = await initialize(file.name, question)
|
47 |
+
return answer
|
48 |
+
|
49 |
+
# Create Gradio Interface
|
50 |
+
gr.Interface(
|
51 |
+
fn=pdf_qa,
|
52 |
+
inputs=[input_file, input_question],
|
53 |
+
outputs=output_text,
|
54 |
+
title="RAG Knowledge Retrieval using Mistral Model",
|
55 |
+
description="Upload a PDF file and ask questions about the content."
|
56 |
+
).launch()
|