Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,8 @@ import google.generativeai as genai
|
|
7 |
from langchain.chains.question_answering import load_qa_chain
|
8 |
import torch
|
9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
10 |
|
11 |
# Configure Gemini API
|
12 |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
@@ -18,7 +20,19 @@ device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
18 |
dtype = torch.bfloat16
|
19 |
mistral_model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
try:
|
23 |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
24 |
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is
|
@@ -29,12 +43,20 @@ def initialize(file_path, question):
|
|
29 |
"""
|
30 |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
31 |
|
32 |
-
|
|
|
|
|
33 |
pdf_loader = PyPDFLoader(file_path)
|
34 |
pages = pdf_loader.load_and_split()
|
35 |
-
context
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
37 |
-
stuff_answer = stuff_chain({"input_documents":
|
38 |
gemini_answer = stuff_answer['output_text']
|
39 |
|
40 |
# Use Mistral model for additional text generation
|
@@ -47,25 +69,27 @@ def initialize(file_path, question):
|
|
47 |
combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_output}"
|
48 |
return combined_output
|
49 |
else:
|
50 |
-
return "Error:
|
51 |
except Exception as e:
|
52 |
return f"An error occurred: {str(e)}"
|
53 |
|
54 |
# Define Gradio Interface
|
55 |
input_file = gr.File(label="Upload PDF File")
|
|
|
56 |
input_question = gr.Textbox(label="Ask about the document")
|
57 |
output_text = gr.Textbox(label="Answer - Combined Gemini and Mistral")
|
58 |
|
59 |
-
def
|
60 |
-
if file is None:
|
61 |
-
return "Please upload a PDF file first."
|
62 |
-
|
|
|
63 |
|
64 |
# Create Gradio Interface
|
65 |
gr.Interface(
|
66 |
-
fn=
|
67 |
-
inputs=[input_file, input_question],
|
68 |
outputs=output_text,
|
69 |
-
title="RAG
|
70 |
-
description="Upload a PDF
|
71 |
-
).launch()
|
|
|
7 |
from langchain.chains.question_answering import load_qa_chain
|
8 |
import torch
|
9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
11 |
+
from PIL import Image
|
12 |
|
13 |
# Configure Gemini API
|
14 |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
|
|
20 |
dtype = torch.bfloat16
|
21 |
mistral_model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
|
22 |
|
23 |
+
# Load BLIP model for image processing
|
24 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
25 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
|
26 |
+
|
27 |
+
def process_image(image):
|
28 |
+
# Convert PIL Image to tensor
|
29 |
+
inputs = blip_processor(images=image, return_tensors="pt").to(device)
|
30 |
+
# Generate caption from image
|
31 |
+
caption_ids = blip_model.generate(**inputs)
|
32 |
+
caption = blip_processor.decode(caption_ids[0], skip_special_tokens=True)
|
33 |
+
return caption
|
34 |
+
|
35 |
+
def initialize(file_path, image, question):
|
36 |
try:
|
37 |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
38 |
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is
|
|
|
43 |
"""
|
44 |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
45 |
|
46 |
+
context = ""
|
47 |
+
|
48 |
+
if file_path and os.path.exists(file_path):
|
49 |
pdf_loader = PyPDFLoader(file_path)
|
50 |
pages = pdf_loader.load_and_split()
|
51 |
+
context += "\n".join(str(page.page_content) for page in pages[:30])
|
52 |
+
|
53 |
+
if image:
|
54 |
+
image_context = process_image(image)
|
55 |
+
context += f"\nImage Context: {image_context}"
|
56 |
+
|
57 |
+
if context:
|
58 |
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
59 |
+
stuff_answer = stuff_chain({"input_documents": [], "question": question, "context": context}, return_only_outputs=True)
|
60 |
gemini_answer = stuff_answer['output_text']
|
61 |
|
62 |
# Use Mistral model for additional text generation
|
|
|
69 |
combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_output}"
|
70 |
return combined_output
|
71 |
else:
|
72 |
+
return "Error: No valid context provided. Please upload a valid PDF or image."
|
73 |
except Exception as e:
|
74 |
return f"An error occurred: {str(e)}"
|
75 |
|
76 |
# Define Gradio Interface
|
77 |
input_file = gr.File(label="Upload PDF File")
|
78 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
79 |
input_question = gr.Textbox(label="Ask about the document")
|
80 |
output_text = gr.Textbox(label="Answer - Combined Gemini and Mistral")
|
81 |
|
82 |
+
def multimodal_qa(file, image, question):
|
83 |
+
if file is None and image is None:
|
84 |
+
return "Please upload a PDF file or an image first."
|
85 |
+
file_path = file.name if file else None
|
86 |
+
return initialize(file_path, image, question)
|
87 |
|
88 |
# Create Gradio Interface
|
89 |
gr.Interface(
|
90 |
+
fn=multimodal_qa,
|
91 |
+
inputs=[input_file, input_image, input_question],
|
92 |
outputs=output_text,
|
93 |
+
title="Multi-modal RAG with Gemini API and Mistral Model",
|
94 |
+
description="Upload a PDF or an image and ask questions about the content."
|
95 |
+
).launch()
|