import os import gradio as gr from langchain_core.prompts import PromptTemplate from langchain_community.document_loaders import PyPDFLoader from langchain_google_genai import ChatGoogleGenerativeAI import google.generativeai as genai from langchain.chains.question_answering import load_qa_chain import torch from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import BlipProcessor, BlipForConditionalGeneration from PIL import Image # Configure Gemini API genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) # Load Mistral model model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" mistral_tokenizer = AutoTokenizer.from_pretrained(model_path) device = 'cuda' if torch.cuda.is_available() else 'cpu' dtype = torch.bfloat16 mistral_model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) # Load BLIP model for image processing blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device) def process_image(image): # Convert PIL Image to tensor inputs = blip_processor(images=image, return_tensors="pt").to(device) # Generate caption from image caption_ids = blip_model.generate(**inputs) caption = blip_processor.decode(caption_ids[0], skip_special_tokens=True) return caption def initialize(file_path, image, question): try: model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) context = "" if file_path and os.path.exists(file_path): pdf_loader = PyPDFLoader(file_path) pages = pdf_loader.load_and_split() context += "\n".join(str(page.page_content) for page in pages[:30]) if image: image_context = process_image(image) context += f"\nImage Context: {image_context}" if context: stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) stuff_answer = stuff_chain({"input_documents": [], "question": question, "context": context}, return_only_outputs=True) gemini_answer = stuff_answer['output_text'] # Use Mistral model for additional text generation mistral_prompt = f"Based on this answer: {gemini_answer}\nGenerate a follow-up question:" mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(device) with torch.no_grad(): mistral_outputs = mistral_model.generate(mistral_inputs, max_length=50) mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True) combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_output}" return combined_output else: return "Error: No valid context provided. Please upload a valid PDF or image." except Exception as e: return f"An error occurred: {str(e)}" # Define Gradio Interface input_file = gr.File(label="Upload PDF File") input_image = gr.Image(type="pil", label="Upload Image") input_question = gr.Textbox(label="Ask about the document") output_text = gr.Textbox(label="Answer - Combined Gemini and Mistral") def multimodal_qa(file, image, question): if file is None and image is None: return "Please upload a PDF file or an image first." file_path = file.name if file else None return initialize(file_path, image, question) # Create Gradio Interface gr.Interface( fn=multimodal_qa, inputs=[input_file, input_image, input_question], outputs=output_text, title="Multi-modal RAG with Gemini API and Mistral Model", description="Upload a PDF or an image and ask questions about the content." ).launch()