|
import os |
|
import cv2 |
|
import torch |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import supervision as sv |
|
|
|
from typing import List |
|
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator |
|
from utils import postprocess_masks, Visualizer |
|
|
|
HOME = os.getenv("HOME") |
|
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') |
|
MINIMUM_AREA_THRESHOLD = 0.01 |
|
|
|
SAM_CHECKPOINT = os.path.join(HOME, "app/weights/sam_vit_h_4b8939.pth") |
|
|
|
SAM_MODEL_TYPE = "vit_h" |
|
|
|
MARKDOWN = """ |
|
<h1 style='text-align: center'> |
|
<img |
|
src='https://som-gpt4v.github.io/website/img/som_logo.png' |
|
style='height:50px; display:inline-block' |
|
/> |
|
Set-of-Mark (SoM) Prompting Unleashes Extraordinary Visual Grounding in GPT-4V |
|
</h1> |
|
|
|
## 🚀 How To |
|
|
|
- Upload an image. |
|
- Click the `Run` button to generate the image with marks. |
|
- Pass OpenAI API 🔑. You can get one [here](https://platform.openai.com/api-keys). |
|
- Ask GPT-4V questions about the image in the chatbot. |
|
|
|
## 🚧 Roadmap |
|
|
|
- [ ] Support for alphabetic labels |
|
- [ ] Support for Semantic-SAM (multi-level) |
|
- [ ] Support for interactive mode |
|
- [ ] Support for result highlighting |
|
""" |
|
|
|
SAM = sam_model_registry[SAM_MODEL_TYPE](checkpoint=SAM_CHECKPOINT).to(device=DEVICE) |
|
|
|
|
|
def inference( |
|
image: np.ndarray, |
|
annotation_mode: List[str], |
|
mask_alpha: float |
|
) -> np.ndarray: |
|
visualizer = Visualizer(mask_opacity=mask_alpha) |
|
mask_generator = SamAutomaticMaskGenerator(SAM) |
|
result = mask_generator.generate(image=image) |
|
detections = sv.Detections.from_sam(result) |
|
detections = postprocess_masks( |
|
detections=detections, |
|
area_threshold=MINIMUM_AREA_THRESHOLD) |
|
bgr_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) |
|
annotated_image = visualizer.visualize( |
|
image=bgr_image, |
|
detections=detections, |
|
with_box="Box" in annotation_mode, |
|
with_mask="Mask" in annotation_mode, |
|
with_polygon="Polygon" in annotation_mode, |
|
with_label="Mark" in annotation_mode) |
|
return cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
def prompt(message, history): |
|
return "response" |
|
|
|
|
|
image_input = gr.Image( |
|
label="Input", |
|
type="numpy", |
|
height=512) |
|
checkbox_annotation_mode = gr.CheckboxGroup( |
|
choices=["Mark", "Polygon", "Mask", "Box"], |
|
value=['Mark'], |
|
label="Annotation Mode") |
|
slider_mask_alpha = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
value=0.05, |
|
label="Mask Alpha") |
|
image_output = gr.Image( |
|
label="SoM Visual Prompt", |
|
type="numpy", |
|
height=512) |
|
textbox_api_key = gr.Textbox( |
|
label="OpenAI API KEY", |
|
type="password") |
|
chatbot = gr.Chatbot( |
|
label="GPT-4V + SoM", |
|
height=256) |
|
run_button = gr.Button("Run") |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(MARKDOWN) |
|
with gr.Row(): |
|
with gr.Column(): |
|
image_input.render() |
|
with gr.Accordion(label="Detailed prompt settings (e.g., mark type)", open=False): |
|
with gr.Row(): |
|
checkbox_annotation_mode.render() |
|
with gr.Row(): |
|
slider_mask_alpha.render() |
|
with gr.Column(): |
|
image_output.render() |
|
run_button.render() |
|
textbox_api_key.render() |
|
with gr.Row(): |
|
gr.ChatInterface(chatbot=chatbot, fn=prompt) |
|
|
|
run_button.click( |
|
fn=inference, |
|
inputs=[image_input, checkbox_annotation_mode, slider_mask_alpha], |
|
outputs=image_output) |
|
|
|
demo.queue().launch(debug=False, show_error=True) |
|
|