SoM / app.py
SkalskiP's picture
Fix `SAM_CHECKPOINT` path
1400af8
raw
history blame
1.81 kB
import os
import torch
import gradio as gr
import numpy as np
import supervision as sv
from typing import List
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
HOME = os.getenv("HOME")
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
SAM_CHECKPOINT = os.path.join(HOME, "app/weights/sam_vit_h_4b8939.pth")
# SAM_CHECKPOINT = "weights/sam_vit_h_4b8939.pth"
SAM_MODEL_TYPE = "vit_h"
MARKDOWN = """
<h1 style='text-align: center'>
<img
src='https://som-gpt4v.github.io/website/img/som_logo.png'
style='height:50px; display:inline-block'
/>
Set-of-Mark (SoM) Prompting Unleashes Extraordinary Visual Grounding in GPT-4V
</h1>
"""
sam = sam_model_registry[SAM_MODEL_TYPE](checkpoint=SAM_CHECKPOINT).to(device=DEVICE)
mask_generator = SamAutomaticMaskGenerator(sam)
def inference(image: np.ndarray, annotation_mode: List[str]) -> np.ndarray:
return image
image_input = gr.Image(
label="Input",
type="numpy")
checkbox_annotation_mode = gr.CheckboxGroup(
choices=["Mark", "Mask", "Box"],
value=['Mark'],
label="Annotation Mode")
image_output = gr.Image(
label="SoM Visual Prompt",
type="numpy",
height=512)
run_button = gr.Button("Run")
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
image_input.render()
with gr.Accordion(label="Detailed prompt settings (e.g., mark type)", open=False):
checkbox_annotation_mode.render()
with gr.Column():
image_output.render()
run_button.render()
run_button.click(
fn=inference,
inputs=[image_input, checkbox_annotation_mode],
outputs=image_output)
demo.queue().launch(debug=False, show_error=True)