Add refine_mask utility and update Dockerfile and app.py
Browse filesIntroduced a new utility function 'refine_mask' in utils.py for refining masks by removing small islands or filling small holes based on a given area threshold.
- Dockerfile +1 -0
- app.py +2 -1
- utils.py +39 -0
Dockerfile
CHANGED
@@ -42,6 +42,7 @@ RUN mkdir -p $HOME/app/weights
|
|
42 |
RUN wget -c -O $HOME/app/weights/sam_vit_h_4b8939.pth https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
|
43 |
|
44 |
COPY app.py .
|
|
|
45 |
|
46 |
RUN find $HOME/app
|
47 |
|
|
|
42 |
RUN wget -c -O $HOME/app/weights/sam_vit_h_4b8939.pth https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
|
43 |
|
44 |
COPY app.py .
|
45 |
+
COPY utils.py .
|
46 |
|
47 |
RUN find $HOME/app
|
48 |
|
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
import torch
|
3 |
|
4 |
import gradio as gr
|
@@ -7,7 +8,7 @@ import supervision as sv
|
|
7 |
|
8 |
from typing import List
|
9 |
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
|
10 |
-
|
11 |
|
12 |
HOME = os.getenv("HOME")
|
13 |
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
|
|
1 |
import os
|
2 |
+
import cv2
|
3 |
import torch
|
4 |
|
5 |
import gradio as gr
|
|
|
8 |
|
9 |
from typing import List
|
10 |
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
|
11 |
+
from utils import refine_mask
|
12 |
|
13 |
HOME = os.getenv("HOME")
|
14 |
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
utils.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
def refine_mask(
|
7 |
+
mask: np.ndarray,
|
8 |
+
area_threshold: float,
|
9 |
+
mode: str = 'islands'
|
10 |
+
) -> np.ndarray:
|
11 |
+
"""
|
12 |
+
Refines a mask by removing small islands or filling small holes based on area
|
13 |
+
threshold.
|
14 |
+
|
15 |
+
Parameters:
|
16 |
+
mask (np.ndarray): Input binary mask.
|
17 |
+
area_threshold (float): Threshold for relative area to remove or fill features.
|
18 |
+
mode (str): Operation mode ('islands' for removing islands, 'holes' for filling
|
19 |
+
holes).
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
np.ndarray: Refined binary mask.
|
23 |
+
"""
|
24 |
+
mask = np.uint8(mask * 255)
|
25 |
+
operation = cv2.RETR_EXTERNAL if mode == 'islands' else cv2.RETR_CCOMP
|
26 |
+
contours, _ = cv2.findContours(
|
27 |
+
mask, operation, cv2.CHAIN_APPROX_SIMPLE
|
28 |
+
)
|
29 |
+
total_area = cv2.countNonZero(mask) if mode == 'islands' else mask.size
|
30 |
+
|
31 |
+
for contour in contours:
|
32 |
+
area = cv2.contourArea(contour)
|
33 |
+
relative_area = area / total_area
|
34 |
+
if relative_area < area_threshold:
|
35 |
+
cv2.drawContours(
|
36 |
+
mask, [contour], -1, (0 if mode == 'islands' else 255), -1
|
37 |
+
)
|
38 |
+
|
39 |
+
return np.where(mask > 0, 1, 0)
|