Robzy's picture
changes
0049d2e
raw
history blame
6.23 kB
import os
from langchain_openai import ChatOpenAI
from pydantic import BaseModel
from langchain_core.output_parsers import JsonOutputParser
from langchain_core.output_parsers import PydanticOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
from langchain_openai import ChatOpenAI
from pydantic import BaseModel
from typing import List
from dotenv import load_dotenv
from transformers import AutoTokenizer, AutoModelForTokenClassification
import torch
import sys
from tabulate import tabulate
import spacy
import re
load_dotenv(".env")
nlp = spacy.load("en_core_web_sm")
def split_text_recursively(text):
if '\n' not in text:
return [text]
parts = text.split('\n', 1)
return [parts[0]] + split_text_recursively(parts[1])
def tokenize_to_sent(path):
# Read the file
with open(path, 'r') as file:
text = file.read()
# Sentence tokenization
str_list = split_text_recursively(text)
str_list = [i.strip() for i in str_list]
str_list = list(filter(None, str_list))
count = 0
sents = []
for line in str_list:
doc = nlp(line)
for sent in doc.sents:
# print(f"{sent.text}")
sents.append(sent.text)
return sents
### LLM-based tag extraction with few-shot learning
model = ChatOpenAI(temperature=0)
class TokenTaggingResult(BaseModel):
tokens: List[str]
skill_labels: List[str]
knowledge_labels: List[str]
model = ChatOpenAI(model_name="gpt-4o", temperature=0.0, api_key=os.getenv('OPENAI_API_KEY'))
tokenizer = AutoTokenizer.from_pretrained("jjzha/jobbert_skill_extraction")
parser = JsonOutputParser(pydantic_object=TokenTaggingResult)
# Definitions
skill_definition = """
Skill means the ability to apply knowledge and use know-how to complete tasks and solve problems.
"""
knowledge_definition = """
Knowledge means the outcome of the assimilation of information through learning. Knowledge is the body of facts, principles, theories and practices that is related to a field of work or study.
"""
# Few-shot examples
with open('few-shot.txt', 'r') as file:
few_shot_examples = file.read()
prompt = PromptTemplate(
template="""You are an expert in tagging tokens with skill and knowledge labels. Use the following definitions to tag the input tokens:
Skill definition:{skill_definition}
Knowledge definition:{knowledge_definition}
Use the examples below to tag the input text into relevant knowledge or skills categories.\n{few_shot_examples}\n{format_instructions}\n{input}\n""",
input_variables=["input"],
partial_variables={"format_instructions": parser.get_format_instructions(),
"few_shot_examples": few_shot_examples,
"skill_definition": skill_definition,
"knowledge_definition": knowledge_definition},
)
def extract_tags(text: str, tokenize = True) -> TokenTaggingResult:
if tokenize:
inputs = tokenizer(text, return_tensors="pt")
tokens = tokenizer.decode(inputs['input_ids'].squeeze()).split()[1:-1]
prompt_and_model = prompt | model
output = prompt_and_model.invoke({"input": tokens})
output = parser.invoke(output)
return tokens, output
### Pre-trained model from Hugging Face
mapping = {0: 'B', 1: 'I', 2: 'O'}
token_skill_classifier = AutoModelForTokenClassification.from_pretrained("jjzha/jobbert_skill_extraction")
token_knowledge_classifier = AutoModelForTokenClassification.from_pretrained("jjzha/jobbert_knowledge_extraction")
def convert(text):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
skill_outputs = token_skill_classifier(**inputs)
knowledge_outputs = token_knowledge_classifier(**inputs)
decoded_tokens = tokenizer.decode(inputs['input_ids'].squeeze()).split()[1:-1]
skill_cls = skill_outputs.logits.argmax(dim=2).squeeze()[1:-1]
knowledge_cls = knowledge_outputs.logits.argmax(dim=2).squeeze()[1:-1]
skill_cls = [mapping[i.item()] for i in skill_cls]
knowledge_cls = [mapping[i.item()] for i in knowledge_cls]
if len(decoded_tokens) != len(skill_cls) or len(decoded_tokens) != len(knowledge_cls):
raise ValueError("Error: Length mismatch")
return skill_cls, knowledge_cls, decoded_tokens
from transformers import pipeline
pipe = pipeline("token-classification", model="jjzha/jobbert_knowledge_extraction")
def convert2(text):
output = pipe(text)
tokens = [i['word'] for i in output]
skill_cls = [i['entity'] for i in output]
knowledge_cls = [i['entity'] for i in output]
return skill_cls, knowledge_cls, tokens
def tag_posting(path, llm_extract = True):
# Reading & sentence tokenization
sents = tokenize_to_sent(path)
for sent in sents:
# print(f"Sent: {sent}")
skill_cls, knowledge_cls, tokens = convert(sent)
# Pre-trained
# skill_cls, knowledge_cls, _ = convert(text)
if llm_extract:
# LLM-based tag extraction
tokens, output = extract_tags(text, tokenize=True)
table = zip(tokens, output['skill_labels'], output['knowledge_labels'], skill_cls, knowledge_cls)
headers = ["Token", "Skill Label", "Knowledge Label", "Pred Skill Label", "Pred Knowledge Label"]
print(tabulate(table, headers=headers, tablefmt="pretty"))
else:
# Only pre-trained
table = zip(tokens, output['skill_labels'], output['knowledge_labels'])
headers = ["Token", "Skill Label", "Knowledge Label"]
print(tabulate(table, headers=headers, tablefmt="pretty"))
if __name__ == "__main__":
path = './job-postings/03-01-2024/1.txt'
tag_posting(path, llm_extract = False)
quit()
text = input('Enter text: ')
# LLM-based tag extraction
tokens, output = extract_tags(text, tokenize=True)
# Pre-trained
skill_cls, knowledge_cls = convert(text)
table = zip(tokens, output['skill_labels'], output['knowledge_labels'], skill_cls, knowledge_cls)
headers = ["Token", "Skill Label", "Knowledge Label", "Pred Skill Label", "Pred Knowledge Label"]
print(tabulate(table, headers=headers, tablefmt="pretty"))