diff --git "a/finetuning.ipynb" "b/finetuning.ipynb" new file mode 100644--- /dev/null +++ "b/finetuning.ipynb" @@ -0,0 +1,8914 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "IqM-T1RTzY6C" + }, + "source": [ + "To run this, press \"*Runtime*\" and press \"*Run all*\" on a **free** Tesla T4 Google Colab instance!\n", + "
\n", + " \n", + " \n", + " Join Discord if you need help + โญ Star us on Github โญ\n", + "
\n", + "\n", + "To install Unsloth on your own computer, follow the installation instructions on our Github page [here](https://github.com/unslothai/unsloth?tab=readme-ov-file#-installation-instructions).\n", + "\n", + "You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save) (eg for Llama.cpp).\n", + "\n", + "**[NEW] Try 2x faster inference in a free Colab for Llama-3.1 8b Instruct [here](https://colab.research.google.com/drive/1T-YBVfnphoVc8E2E854qF3jdia2Ll2W2?usp=sharing)**\n", + "\n", + "Features in the notebook:\n", + "1. Uses Maxime Labonne's [FineTome 100K](https://huggingface.co/datasets/mlabonne/FineTome-100k) dataset.\n", + "1. Convert ShareGPT to HuggingFace format via `standardize_sharegpt`\n", + "2. Train on Completions / Assistant only via `train_on_responses_only`\n", + "3. Unsloth now supports Torch 2.4, all TRL & Xformers versions & Python 3.12!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2eSvM9zX_2d3" + }, + "outputs": [], + "source": [ + "%%capture\n", + "!pip install unsloth\n", + "# Also get the latest nightly Unsloth!\n", + "!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "r2v_X2fA0Df5" + }, + "source": [ + "* We support Llama, Mistral, Phi-3, Gemma, Yi, DeepSeek, Qwen, TinyLlama, Vicuna, Open Hermes etc\n", + "* We support 16bit LoRA or 4bit QLoRA. Both 2x faster.\n", + "* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method.\n", + "* [**NEW**] We make Gemma-2 9b / 27b **2x faster**! See our [Gemma-2 9b notebook](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing)\n", + "* [**NEW**] To finetune and auto export to Ollama, try our [Ollama notebook](https://colab.research.google.com/drive/1WZDi7APtQ9VsvOrQSSC5DDtxq159j8iZ?usp=sharing)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "QmUBVEnvCDJv", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 325, + "referenced_widgets": [ + "4c3deec2baf94a8ea4c80478bdff01d3", + "bb975f0ad3d74a6395d1923c5a53dc39", + "2a5dd426aafb4b3f9d793797abf7d9de", + "2d6df02166fc4642b4bfdcc0cfd865a6", + "9505c5ed83394db6a5b343b0276d6901", + "666f9103ec5c41bc891b05a901c616cf", + "e16037bafd8b454d8c434e85efed28dd", + "236a2e7c3a454f0c8a2ca24a0907255e", + "7a132f9d1e3848f994f98609236a1b6f", + "a06ec7523d9744e297ff6338512360f9", + "1a1d139b772d441797ae128be73db0dc", + "31af95f1ac3544f7a37be67c4a034080", + "4df2859b402941fc97d55070577fb97d", + "e1adc042d1fb462ba6ff0aa78b4682a5", + "8df3feb0d379485cb67359b331e8eadc", + "96d6f856c69a4345b91a882f28a1f4d6", + "69cacfb40879486281c496c495b41a8b", + "31d2c055316e4437a7bd01c06cb305fb", + "0577e447b0c94726bc21517298ac2cb8", + "4d8ddbfb9856401cb197b932c8eb3c9c", + "d3684e6bf5f84cee9d54db03d89e0e05", + "29c14add20b64cf9acc2615fe8059df2", + "eee9bc3f569b43d39e6f63306984095e", + "4e53974041184decb4264bd0106b290e", + "9abb96ca74da49fa840c561590ada0d2", + "1fce6848db9e4c85b70b2398015f91df", + "aac974f4fe8d418bb417ce72de56cc76", + "62d8bcccd42d4d2cb01f882aa77e2e93", + "f4e68d5f7ae846b78277ef7048b2d9fe", + "339ac2f6f46e478f92d976e66d0279e3", + "4cb1776ddaab40a18f5429048986219b", + "cd64808256fd49c4a487e7f9024655ee", + "9e36beaa7f344c2c9ce4f2267048445d", + "f7d925b7a7bf4383a45446c860df582e", + "343b5acebc4f40df8435009d864547af", + "94b3f061f56e46d8855ed8b22a36723a", + "8eae1393abeb4271b898031efafaa73b", + "b08feca372624beea25a04d51de239e6", + "7d31e8d7836a419cb1e86a770c23e156", + "31757a48490c472685daee4728207ae5", + "fa27d942953849569801a255609aabd8", + "893496c19cbb48bc88faec4f564244a5", + "43ba4aee4eba41f98711c0dd4885c3c9", + "6533fd4ecd1b4b1e8a234dee190bb1a7", + "aa83df54525940f6b0bda6541f7239a7", + "930e448a64f445c9a68c7b9c50b94115", + "429bdc8caf4f45bbbffaef73c77429e1", + "49e32833321e41499050e07ff5a11f79", + "cf41ce1014eb4dceabe51497c7680167", + "8fb8af69d4a342859cce7135cdfad95a", + "2292a009cfd04819b2baeeeb69aca17c", + "7810fd97276e4192a0af08b5485f809c", + "1bd5bf129f304ad9a051eac47a6e33d4", + "5dc2fbc9d37f4a04a720a5b9ed3c6062", + "547dbb4d9a8144aea87ec148dad75989" + ] + }, + "outputId": "6075eae7-af7f-4617-c25f-b790054c63d1" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "๐Ÿฆฅ Unsloth: Will patch your computer to enable 2x faster free finetuning.\n", + "๐Ÿฆฅ Unsloth Zoo will now patch everything to make training faster!\n", + "==((====))== Unsloth 2024.11.10: Fast Llama patching. Transformers:4.46.2.\n", + " \\\\ /| GPU: Tesla T4. Max memory: 14.748 GB. Platform: Linux.\n", + "O^O/ \\_/ \\ Torch: 2.5.1+cu121. CUDA: 7.5. CUDA Toolkit: 12.1. Triton: 3.1.0\n", + "\\ / Bfloat16 = FALSE. FA [Xformers = 0.0.28.post3. FA2 = False]\n", + " \"-____-\" Free Apache license: http://github.com/unslothai/unsloth\n", + "Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored!\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "model.safetensors: 0%| | 0.00/1.03G [00:00 0 ! Suggested 8, 16, 32, 64, 128\n", + " target_modules = [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n", + " \"gate_proj\", \"up_proj\", \"down_proj\",],\n", + " lora_alpha = 16,\n", + " lora_dropout = 0, # Supports any, but = 0 is optimized\n", + " bias = \"none\", # Supports any, but = \"none\" is optimized\n", + " # [NEW] \"unsloth\" uses 30% less VRAM, fits 2x larger batch sizes!\n", + " use_gradient_checkpointing = \"unsloth\", # True or \"unsloth\" for very long context\n", + " random_state = 3407,\n", + " use_rslora = False, # We support rank stabilized LoRA\n", + " loftq_config = None, # And LoftQ\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vITh0KVJ10qX" + }, + "source": [ + "\n", + "### Data Prep\n", + "We now use the `Llama-3.1` format for conversation style finetunes. We use [Maxime Labonne's FineTome-100k](https://huggingface.co/datasets/mlabonne/FineTome-100k) dataset in ShareGPT style. But we convert it to HuggingFace's normal multiturn format `(\"role\", \"content\")` instead of `(\"from\", \"value\")`/ Llama-3 renders multi turn conversations like below:\n", + "\n", + "```\n", + "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n", + "\n", + "Hello!<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n", + "\n", + "Hey there! How are you?<|eot_id|><|start_header_id|>user<|end_header_id|>\n", + "\n", + "I'm great thanks!<|eot_id|>\n", + "```\n", + "\n", + "We use our `get_chat_template` function to get the correct chat template. We support `zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, phi3, llama3` and more." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LjY75GoYUCB8", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 113, + "referenced_widgets": [ + "4ef2e9ed70594558b4bd281c7d6ca5d2", + "ee91f15ce7a7447b9b799f536f1457a9", + "b48803411188408daf2a8fc02d53c8f4", + "632df15c299c45ca99e54a96e7fd2043", + "e04f3dc11da4496c87f2551780a1eb75", + "d619b61774b0481eae38e76e8d67c814", + "541820d63c434329904588c4dddb75f5", + "8b936eaf90804b16a87aaf107c592279", + "38d3238f9ee143eb87137aa4fc91cf40", + "ce31f2dd6b9044ae9d076cc8a8396286", + "31222533a8284ec7ac2e446141dba9ff", + "5396fefacb2347f38112242a0305dd6a", + "bfa4248cf9d841f0911419d114e60e24", + "7aa5fee3a54f491bb7c9f252c56bf05e", + "75c5837c4c83417f930424649dae7a3e", + "2f4b5f095da44c8e9e5278c41c11ac37", + "ea3657d821634d37b112cc0e94ae9295", + "266f0114d58c4bbf9aa1f604df52d2a2", + "794ae2a3bf744fa5900c42fe628389b4", + "e69d7656f4c541fea7a6b9fe3c088462", + "a0db3c5db7664185b44e37d975fb917c", + "0b3000219b5349b28213a108f67e8517", + "e2f4b572569e4aedbd4a0efac9156d67", + "ed566d0f5c074fa698e882210a1fd4ea", + "4d146134b7304beb967ee3dea28d05ff", + "b679084ddb2e46a48658d76afd22cb5c", + "b157ac6dd5bf4c2eacf03921bd3ee318", + "56a48a0353c148e88796bc1e7a70440b", + "8ea199ab8df346ab863f928d3e9dbcdb", + "7858c79373064059bacc8275e3687bf8", + "3706f26b7fdb4b61b931e86aca398711", + "a1833e5ec6604e7395429d7ccd119fa6", + "13ec5d369fbd4f7e8fcca76f69073817" + ] + }, + "outputId": "5e627a20-c480-4c79-b79d-d08061ed5e53" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "README.md: 0%| | 0.00/982 [00:00<|start_header_id|>system<|end_header_id|>\\n\\nCutting Knowledge Date: December 2023\\nToday Date: 26 July 2024\\n\\n<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\nHow do astronomers determine the original wavelength of light emitted by a celestial body at rest, which is necessary for measuring its speed using the Doppler effect?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\nAstronomers make use of the unique spectral fingerprints of elements found in stars. These elements emit and absorb light at specific, known wavelengths, forming an absorption spectrum. By analyzing the light received from distant stars and comparing it to the laboratory-measured spectra of these elements, astronomers can identify the shifts in these wavelengths due to the Doppler effect. The observed shift tells them the extent to which the light has been redshifted or blueshifted, thereby allowing them to calculate the speed of the star along the line of sight relative to Earth.<|eot_id|>'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## WandDB for tracking" + ], + "metadata": { + "id": "bBQwzxFTIybF" + } + }, + { + "cell_type": "code", + "source": [ + "!pip install wandb" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5ySmoSUCIxho", + "outputId": "ee0c9d01-7aa1-4d4d-b264-6237a844df6d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: wandb in /usr/local/lib/python3.10/dist-packages (0.18.7)\n", + "Requirement already satisfied: click!=8.0.0,>=7.1 in /usr/local/lib/python3.10/dist-packages (from wandb) (8.1.7)\n", + "Requirement already satisfied: docker-pycreds>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from wandb) (0.4.0)\n", + "Requirement already satisfied: gitpython!=3.1.29,>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from wandb) (3.1.43)\n", + "Requirement already satisfied: platformdirs in /usr/local/lib/python3.10/dist-packages (from wandb) (4.3.6)\n", + "Requirement already satisfied: protobuf!=4.21.0,!=5.28.0,<6,>=3.19.0 in /usr/local/lib/python3.10/dist-packages (from wandb) (3.20.3)\n", + "Requirement already satisfied: psutil>=5.0.0 in /usr/local/lib/python3.10/dist-packages (from wandb) (5.9.5)\n", + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from wandb) (6.0.2)\n", + "Requirement already satisfied: requests<3,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from wandb) (2.32.3)\n", + "Requirement already satisfied: sentry-sdk>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from wandb) (2.18.0)\n", + "Requirement already satisfied: setproctitle in /usr/local/lib/python3.10/dist-packages (from wandb) (1.3.4)\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from wandb) (75.1.0)\n", + "Requirement already satisfied: typing-extensions<5,>=4.4 in /usr/local/lib/python3.10/dist-packages (from wandb) (4.12.2)\n", + "Requirement already satisfied: six>=1.4.0 in /usr/local/lib/python3.10/dist-packages (from docker-pycreds>=0.4.0->wandb) (1.16.0)\n", + "Requirement already satisfied: gitdb<5,>=4.0.1 in /usr/local/lib/python3.10/dist-packages (from gitpython!=3.1.29,>=1.0.0->wandb) (4.0.11)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.0.0->wandb) (3.4.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.0.0->wandb) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.0.0->wandb) (2.2.3)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.0.0->wandb) (2024.8.30)\n", + "Requirement already satisfied: smmap<6,>=3.0.1 in /usr/local/lib/python3.10/dist-packages (from gitdb<5,>=4.0.1->gitpython!=3.1.29,>=1.0.0->wandb) (5.0.1)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import wandb\n", + "wandb.login()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 145 + }, + "id": "TiZZLfXZI8wj", + "outputId": "5d917b98-db6c-43a8-fefc-78f6b2f87d6d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[34m\u001b[1mwandb\u001b[0m: Using wandb-core as the SDK backend. Please refer to https://wandb.me/wandb-core for more information.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "application/javascript": [ + "\n", + " window._wandbApiKey = new Promise((resolve, reject) => {\n", + " function loadScript(url) {\n", + " return new Promise(function(resolve, reject) {\n", + " let newScript = document.createElement(\"script\");\n", + " newScript.onerror = reject;\n", + " newScript.onload = resolve;\n", + " document.body.appendChild(newScript);\n", + " newScript.src = url;\n", + " });\n", + " }\n", + " loadScript(\"https://cdn.jsdelivr.net/npm/postmate/build/postmate.min.js\").then(() => {\n", + " const iframe = document.createElement('iframe')\n", + " iframe.style.cssText = \"width:0;height:0;border:none\"\n", + " document.body.appendChild(iframe)\n", + " const handshake = new Postmate({\n", + " container: iframe,\n", + " url: 'https://wandb.ai/authorize'\n", + " });\n", + " const timeout = setTimeout(() => reject(\"Couldn't auto authenticate\"), 5000)\n", + " handshake.then(function(child) {\n", + " child.on('authorize', data => {\n", + " clearTimeout(timeout)\n", + " resolve(data)\n", + " });\n", + " });\n", + " })\n", + " });\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[34m\u001b[1mwandb\u001b[0m: Logging into wandb.ai. (Learn how to deploy a W&B server locally: https://wandb.me/wandb-server)\n", + "\u001b[34m\u001b[1mwandb\u001b[0m: You can find your API key in your browser here: https://wandb.ai/authorize\n", + "wandb: Paste an API key from your profile and hit enter, or press ctrl+c to quit:" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ยทยทยทยทยทยทยทยทยทยท\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[34m\u001b[1mwandb\u001b[0m: Appending key for api.wandb.ai to your netrc file: /root/.netrc\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import os\n", + "os.environ[\"WANDB_PROJECT\"]=\"id2223\"\n", + "os.environ[\"WANDB_LOG_MODEL\"] = \"checkpoint\"" + ], + "metadata": { + "id": "XfauH3pSMAQo" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "idAEIeSQ3xdS" + }, + "source": [ + "\n", + "### Train the model\n", + "Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co/docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`. We also support TRL's `DPOTrainer`!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "95_Nn-89DhsL", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 67, + "referenced_widgets": [ + "5861c997f06a4956ba05647bad0ca368", + "52e2667aa16c4b52aa9c602d4b8ee398", + "e90e270c6fd948f281f43205d18cc4db", + "a3f9a1468ac84a5a91f0114900d7d4d5", + "1d02b96ef30249f38b9dadd9159ea936", + "dc32c3f442d84e9dbda13be6a6ce3352", + "1b6a38357e584a7a824f29f0868a8575", + "a1267f96544242659062f9311f9bf9a2", + "7929f417cde840fc909e6fecb2a65ca1", + "6c3fcbd4e51740118fe65dd5626aab40", + "f6b3e230eb2b446dbf2eb5737c0128da" + ] + }, + "outputId": "f0482359-fab1-492b-c60c-448264b1f8fd" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map (num_proc=4): 0%| | 0/100000 [00:00user<|end_header_id|>\\n\\n\",\n", + " response_part = \"<|start_header_id|>assistant<|end_header_id|>\\n\\n\",\n", + ")" + ], + "metadata": { + "id": "juQiExuBG5Bt", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49, + "referenced_widgets": [ + "c59cd7a65f8f4036b96276b2cf2bd00f", + "bfeb81731e1b477a9bf69caba3feadd2", + "47c96b8cae35465fb3899d3987476766", + "f09f0425e65b43148b634adad9edc3c2", + "fc25fc3c647a4d858d6ab01c0d2bffa5", + "40dfc0ad2e854bea859ad18142d506de", + "b407473976fb4bab9933b9d7e89b584a", + "93be6e157d56441f83089795021133ea", + "04b8c446b98e48e79a7654002dd8fa79", + "582293c1ec6f440885275491144463ab", + "5dc55a3d72e14e2f964560b37282a788" + ] + }, + "outputId": "55d189a2-e1da-4daf-fce8-d71598d63c4f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/100000 [00:00<|start_header_id|>system<|end_header_id|>\\n\\nCutting Knowledge Date: December 2023\\nToday Date: 26 July 2024\\n\\n<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\nHow do astronomers determine the original wavelength of light emitted by a celestial body at rest, which is necessary for measuring its speed using the Doppler effect?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\nAstronomers make use of the unique spectral fingerprints of elements found in stars. These elements emit and absorb light at specific, known wavelengths, forming an absorption spectrum. By analyzing the light received from distant stars and comparing it to the laboratory-measured spectra of these elements, astronomers can identify the shifts in these wavelengths due to the Doppler effect. The observed shift tells them the extent to which the light has been redshifted or blueshifted, thereby allowing them to calculate the speed of the star along the line of sight relative to Earth.<|eot_id|>'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "space = tokenizer(\" \", add_special_tokens = False).input_ids[0]\n", + "tokenizer.decode([space if x == -100 else x for x in trainer.train_dataset[5][\"labels\"]])" + ], + "metadata": { + "id": "_rD6fl8EUxnG", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 91 + }, + "outputId": "7bdb624d-4afb-479b-c935-d5a925f11da2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "' \\n\\nAstronomers make use of the unique spectral fingerprints of elements found in stars. These elements emit and absorb light at specific, known wavelengths, forming an absorption spectrum. By analyzing the light received from distant stars and comparing it to the laboratory-measured spectra of these elements, astronomers can identify the shifts in these wavelengths due to the Doppler effect. The observed shift tells them the extent to which the light has been redshifted or blueshifted, thereby allowing them to calculate the speed of the star along the line of sight relative to Earth.<|eot_id|>'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "We can see the System and Instruction prompts are successfully masked!" + ], + "metadata": { + "id": "3enWUM0jV-jV" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2ejIt2xSNKKp", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "4905a0e5-19fb-4948-e5ad-9ffa75619a4a" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "GPU = Tesla T4. Max memory = 14.748 GB.\n", + "1.148 GB of memory reserved.\n" + ] + } + ], + "source": [ + "#@title Show current memory stats\n", + "gpu_stats = torch.cuda.get_device_properties(0)\n", + "start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n", + "max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\n", + "print(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\n", + "print(f\"{start_gpu_memory} GB of memory reserved.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "yqxqAZ7KJ4oL", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "9ab87013-9baf-45dc-c062-f02fa40ea758" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1\n", + " \\\\ /| Num examples = 100,000 | Num Epochs = 1\n", + "O^O/ \\_/ \\ Batch size per device = 2 | Gradient Accumulation steps = 4\n", + "\\ / Total batch size = 8 | Total steps = 20\n", + " \"-____-\" Number of trainable parameters = 11,272,192\n", + "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m The `run_name` is currently set to the same value as `TrainingArguments.output_dir`. If this was not intended, please specify a different run name by setting the `TrainingArguments.run_name` parameter.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "Changes to your `wandb` environment variables will be ignored because your `wandb` session has already started. For more information on how to modify your settings with `wandb.init()` arguments, please refer to the W&B docs." + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mrobzy\u001b[0m (\u001b[33mid2223\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "Tracking run with wandb version 0.18.7" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "Run data is saved locally in /content/wandb/run-20241130_071312-925e6em1" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "Syncing run outputs to Weights & Biases (docs)
" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + " View project at https://wandb.ai/id2223/id2223" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + " View run at https://wandb.ai/id2223/id2223/runs/925e6em1" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [20/20 01:17, Epoch 0/1]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StepTraining Loss
10.867000
20.962500
31.164500
41.044200
50.833600
61.056700
70.747000
81.111800
91.005200
100.881000
110.999900
121.253400
131.063600
140.750100
151.004400
160.741900
171.153800
180.986800
190.886300
201.025200

" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[34m\u001b[1mwandb\u001b[0m: Adding directory to artifact (./outputs/checkpoint-10)... Done. 0.5s\n", + "\u001b[34m\u001b[1mwandb\u001b[0m: Adding directory to artifact (./outputs/checkpoint-20)... Done. 0.4s\n", + "max_steps is given, it will override any value given in num_train_epochs\n" + ] + } + ], + "source": [ + "trainer_stats = trainer.train()" + ] + }, + { + "cell_type": "code", + "source": [ + "wandb.finish()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 388, + "referenced_widgets": [ + "d6accc4038424f5fbfcc8c54762ec8ca", + "bfd14116621b448ea29e716b0dd41492", + "597b6317dd954285814f1d80c817a683", + "1689c268efe84d9c8fa8bae7871e5c09", + "566c9df6d64149cea2c47f04a631fac7", + "2c804df2de23445b8a8f746b86897e77", + "99bd1c24e6674d20b17372d090cbac05", + "bfa5e6218f91406483b601ff48a677e3" + ] + }, + "id": "n7LkysP0N_-_", + "outputId": "ed35d58d-b030-43ef-de96-bd38691e440c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "VBox(children=(Label(value='83.362 MB of 146.758 MB uploaded\\r'), FloatProgress(value=0.5680246166833091, max=โ€ฆ" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "d6accc4038424f5fbfcc8c54762ec8ca" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + "

Run history:


train/epochโ–โ–โ–‚โ–‚โ–‚โ–ƒโ–ƒโ–„โ–„โ–„โ–…โ–…โ–…โ–†โ–†โ–‡โ–‡โ–‡โ–ˆโ–ˆโ–ˆ
train/global_stepโ–โ–โ–‚โ–‚โ–‚โ–ƒโ–ƒโ–„โ–„โ–„โ–…โ–…โ–…โ–†โ–†โ–‡โ–‡โ–‡โ–ˆโ–ˆโ–ˆ
train/grad_normโ–…โ–‡โ–ˆโ–…โ–„โ–…โ–ƒโ–…โ–‚โ–ƒโ–โ–ƒโ–…โ–‚โ–‚โ–ƒโ–„โ–†โ–‚โ–„
train/learning_rateโ–‚โ–„โ–…โ–‡โ–ˆโ–ˆโ–‡โ–‡โ–†โ–†โ–…โ–…โ–„โ–„โ–ƒโ–ƒโ–‚โ–‚โ–โ–
train/lossโ–ƒโ–„โ–‡โ–…โ–‚โ–…โ–โ–†โ–…โ–ƒโ–…โ–ˆโ–…โ–โ–…โ–โ–‡โ–„โ–ƒโ–…

Run summary:


total_flos701492545757184.0
train/epoch0.0016
train/global_step20
train/grad_norm0.30762
train/learning_rate0
train/loss1.0252
train_loss0.97694
train_runtime116.4671
train_samples_per_second1.374
train_steps_per_second0.172

" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + " View run outputs at: https://wandb.ai/id2223/id2223/runs/925e6em1
View project at: https://wandb.ai/id2223/id2223
Synced 5 W&B file(s), 0 media file(s), 21 artifact file(s) and 0 other file(s)" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "Find logs at: ./wandb/run-20241130_071312-925e6em1/logs" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pCqnaKmlO1U9", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2e8ef0ea-aed5-4f13-cfae-89756cda2747" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "116.4671 seconds used for training.\n", + "1.94 minutes used for training.\n", + "Peak reserved memory = 2.471 GB.\n", + "Peak reserved memory for training = 1.323 GB.\n", + "Peak reserved memory % of max memory = 16.755 %.\n", + "Peak reserved memory for training % of max memory = 8.971 %.\n" + ] + } + ], + "source": [ + "#@title Show final memory and time stats\n", + "used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n", + "used_memory_for_lora = round(used_memory - start_gpu_memory, 3)\n", + "used_percentage = round(used_memory /max_memory*100, 3)\n", + "lora_percentage = round(used_memory_for_lora/max_memory*100, 3)\n", + "print(f\"{trainer_stats.metrics['train_runtime']} seconds used for training.\")\n", + "print(f\"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.\")\n", + "print(f\"Peak reserved memory = {used_memory} GB.\")\n", + "print(f\"Peak reserved memory for training = {used_memory_for_lora} GB.\")\n", + "print(f\"Peak reserved memory % of max memory = {used_percentage} %.\")\n", + "print(f\"Peak reserved memory for training % of max memory = {lora_percentage} %.\")" + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "n7B8irCKyPqo" + } + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "bNcR8PnfN-8a" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ekOmTR1hSNcr" + }, + "source": [ + "\n", + "### Inference\n", + "Let's run the model! You can change the instruction and input - leave the output blank!\n", + "\n", + "**[NEW] Try 2x faster inference in a free Colab for Llama-3.1 8b Instruct [here](https://colab.research.google.com/drive/1T-YBVfnphoVc8E2E854qF3jdia2Ll2W2?usp=sharing)**\n", + "\n", + "We use `min_p = 0.1` and `temperature = 1.5`. Read this [Tweet](https://x.com/menhguin/status/1826132708508213629) for more information on why." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "kR3gIAX-SM2q", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "174cc3e4-4a78-4985-eb18-8f09c5a4ffc3" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "['<|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\nCutting Knowledge Date: December 2023\\nToday Date: 26 July 2024\\n\\n<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\nContinue the fibonnaci sequence: 1, 1, 2, 3, 5, 8,<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\nThe sequence continues as:\\n\\n2, 5, 8,<|eot_id|>']" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [ + "from unsloth.chat_templates import get_chat_template\n", + "\n", + "tokenizer = get_chat_template(\n", + " tokenizer,\n", + " chat_template = \"llama-3.1\",\n", + ")\n", + "FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n", + "\n", + "messages = [\n", + " {\"role\": \"user\", \"content\": \"Continue the fibonnaci sequence: 1, 1, 2, 3, 5, 8,\"},\n", + "]\n", + "inputs = tokenizer.apply_chat_template(\n", + " messages,\n", + " tokenize = True,\n", + " add_generation_prompt = True, # Must add for generation\n", + " return_tensors = \"pt\",\n", + ").to(\"cuda\")\n", + "\n", + "outputs = model.generate(input_ids = inputs, max_new_tokens = 64, use_cache = True,\n", + " temperature = 1.5, min_p = 0.1)\n", + "tokenizer.batch_decode(outputs)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CrSvZObor0lY" + }, + "source": [ + " You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "e2pEuRb1r2Vg", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "cb3e42ee-ade6-4d03-d9f0-ce48c2cc1c64" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "1 1 2 3 5 8<|eot_id|>\n" + ] + } + ], + "source": [ + "FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n", + "\n", + "messages = [\n", + " {\"role\": \"user\", \"content\": \"Continue the fibonnaci sequence: 1, 1, 2, 3, 5, 8,\"},\n", + "]\n", + "inputs = tokenizer.apply_chat_template(\n", + " messages,\n", + " tokenize = True,\n", + " add_generation_prompt = True, # Must add for generation\n", + " return_tensors = \"pt\",\n", + ").to(\"cuda\")\n", + "\n", + "from transformers import TextStreamer\n", + "text_streamer = TextStreamer(tokenizer, skip_prompt = True)\n", + "_ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128,\n", + " use_cache = True, temperature = 1.5, min_p = 0.1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uMuVrWbjAzhc" + }, + "source": [ + "\n", + "### Saving, loading finetuned models\n", + "To save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save.\n", + "\n", + "**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "upcOlWe7A1vc", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 200, + "referenced_widgets": [ + "9ffdda8f9c5743d3ad68d7ac04836005", + "b546cf0dd67341d0ab800c24d0d64f5e", + "7753719d5b5e42cb9be5885022331912", + "f7dfa3fc06344c089688036d578b1885", + "24a33ba11104499d8dab96238ed6874c", + "eb7863aa333d404987033d2766d759ca", + "a787d6060cd34e6e8a8862857a4e6109", + "92a836db3d8f43d3830c799ae716b633", + "07dddca6c2024c3b883e794062e50991", + "3efbb924cbc94df6b4f40d0fc2579965", + "6939625444fc4441b0572bb97bb15937", + "561ecd47a1ff4767ad1e17d8e08f3520", + "c2c9eb9167e14896a46d948e59fde31e", + "b8136af993a94cfab591d4e803d19785", + "bd14eaf3d91641eea6f575f1a8bf92b1", + "d2d14b1077ec4f5e8aa8a4a7e4235141", + "f768e8ca2c2a42f888b5bd899612edfd", + "acc685df3e0e4cf4ad23e3ac47186e1c", + "f1cde7f63e794b02ad03c0dbd1e6de2d", + "7e2cb29d01954118b1e1f96f77195723", + "5f750c954a054f9495ba31e4c67fb11d", + "74d9c8a3f9dd46cb9463a69edb81e060", + "e7369f1637ba4ee29fd1b927fb4d7676", + "bd0cd3ea500c4a33aa883cf976da141a", + "1ce0936c2aa549ae902374ce31d47be0", + "c1e66d4831b74997afc9b199464cdff7", + "b1c220c35b26431ebb1772d7c64626e6", + "2dd1298568c24417911a1810c4e89122", + "9a3cb949f94c4ed091cab2a114c6e29e", + "cdcbb5332d96412db375e495742665ef", + "bc33c568986e4663aca6a11e9bd4de16", + "97c4468ff7384d019ba7f5acaf4cc5a9", + "e180aa9d9c394236ae61e32715a0e60f", + "dfdc111bbf64426bb3cc3f1743dd30f9", + "c7c0301758244604baadf96b487ed369", + "b5f8e89742104bf88e07281d796402d3", + "e8e4073ade4549f1a8c02f75f26a6a24", + "7843923bd0a24c9a831c57be9c00a86c", + "f934af809a40455b8dce4b87a6fc3dba", + "6a89fc221533445bb36c3e6bda1f0c5d", + "438a3692d4aa4f109add67c89482f880", + "e3d5b65a9db04bbc9035f0afb86e0d7e", + "0d309915b27244f1b55c849e168af607", + "dd44275d92be413a8aa9f74a8c282d5c" + ] + }, + "outputId": "b092e22f-e95a-44fc-b376-256932ff0f01" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "README.md: 0%| | 0.00/594 [00:00\n", + "Traceback (most recent call last):\n", + " File \"/usr/local/lib/python3.10/dist-packages/jax/_src/lib/__init__.py\", line 96, in _xla_gc_callback\n", + " def _xla_gc_callback(*args):\n", + "KeyboardInterrupt: \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "The French capital's towering edifice stands at a height of 60 meters. This is a high-rise, modern skyscraper with a sleek and aerodynamic design that captures the beauty of the Parisian skyline. The tower is made of a lightweight material with a series of clear glass panels at its top, allowing a flood of light to enter the interior. The outside is clad in dark-colored glass panels, which provide the structural framework and aesthetic appeal of the tower.<|eot_id|>\n" + ] + } + ], + "source": [ + "if True:\n", + " from unsloth import FastLanguageModel\n", + " model, tokenizer = FastLanguageModel.from_pretrained(\n", + " model_name = \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n", + " max_seq_length = max_seq_length,\n", + " dtype = dtype,\n", + " load_in_4bit = load_in_4bit,\n", + " )\n", + " FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n", + "\n", + "messages = [\n", + " {\"role\": \"user\", \"content\": \"Describe a tall tower in the capital of France.\"},\n", + "]\n", + "inputs = tokenizer.apply_chat_template(\n", + " messages,\n", + " tokenize = True,\n", + " add_generation_prompt = True, # Must add for generation\n", + " return_tensors = \"pt\",\n", + ").to(\"cuda\")\n", + "\n", + "from transformers import TextStreamer\n", + "text_streamer = TextStreamer(tokenizer, skip_prompt = True)\n", + "_ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128,\n", + " use_cache = True, temperature = 1.5, min_p = 0.1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QQMjaNrjsU5_" + }, + "source": [ + "You can also use Hugging Face's `AutoModelForPeftCausalLM`. Only use this if you do not have `unsloth` installed. It can be hopelessly slow, since `4bit` model downloading is not supported, and Unsloth's **inference is 2x faster**." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "yFfaXG0WsQuE" + }, + "outputs": [], + "source": [ + "if False:\n", + " # I highly do NOT suggest - use Unsloth if possible\n", + " from peft import AutoPeftModelForCausalLM\n", + " from transformers import AutoTokenizer\n", + " model = AutoPeftModelForCausalLM.from_pretrained(\n", + " \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n", + " load_in_4bit = load_in_4bit,\n", + " )\n", + " tokenizer = AutoTokenizer.from_pretrained(\"lora_model\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "f422JgM9sdVT" + }, + "source": [ + "### Saving to float16 for VLLM\n", + "\n", + "We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co/settings/tokens for your personal tokens." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "iHjt_SMYsd3P" + }, + "outputs": [], + "source": [ + "# Merge to 16bit\n", + "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_16bit\",)\n", + "if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_16bit\", token = \"\")\n", + "\n", + "# Merge to 4bit\n", + "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_4bit\",)\n", + "if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_4bit\", token = \"\")\n", + "\n", + "# Just LoRA adapters\n", + "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"lora\",)\n", + "if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"lora\", token = \"\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TCv4vXHd61i7" + }, + "source": [ + "### GGUF / llama.cpp Conversion\n", + "To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF.\n", + "\n", + "Some supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki#gguf-quantization-options)):\n", + "* `q8_0` - Fast conversion. High resource use, but generally acceptable.\n", + "* `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.\n", + "* `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K.\n", + "\n", + "[**NEW**] To finetune and auto export to Ollama, try our [Ollama notebook](https://colab.research.google.com/drive/1WZDi7APtQ9VsvOrQSSC5DDtxq159j8iZ?usp=sharing)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "FqfebeAdT073", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000, + "referenced_widgets": [ + "ade4b4c1ee22436c9b85356243a50485", + "32da6c3892244f43b63e6367a5d46786", + "23c56d5c74a647f1b7a7e27914b4536a", + "cd82a504a6ad4a5190c8e386436019cf", + "379785fe7af442dcb697d68cac807a86", + "8c719f03a3ed42a6b5e74251d2a88cf1", + "5bcb82d8e1694e218582449d041557dc", + "74b7ec150d1446b28fe11790dea287c7", + "33184c9b6a4a44ff836da7203256c816", + "e11365da21304c02a45a5c9adf2a44da", + "2552d10b8fba4ea3a004e24adf612dcb", + "6ce199a077814319a6de805eda52df2b", + "faf4e352836e44cda599df406d941b20", + "216f8da7d8194fa0894169a55e770657", + "2ab662f6640349d6b829472c6cdc8f53", + "ebb9c1711d334cdfb9e89ed227519e94", + "ab9cd76dbbc34df4a148cd3593af7d4f", + "f3e45682c0564513a9184619ead4c771", + "1d2300dba31d4753805eb3b9db8c6910", + "15bd7445a49d45cb95fc704662d3cd04", + "be543450da1340d0b775184f5bb99dd3", + "28b4ae40aee14e599925e248ff1b68e7" + ] + }, + "outputId": "726bb767-cd5d-4c05-b717-5a05f574d60c" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Unsloth: Merging 4bit and LoRA weights to 16bit...\n", + "Unsloth: Will use up to 5.61 out of 12.67 RAM for saving.\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 16/16 [00:00<00:00, 39.52it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Unsloth: Saving tokenizer... Done.\n", + "Unsloth: Saving model... This might take 5 minutes for Llama-7b...\n", + "Unsloth: Saving Robzy/Llama-3.2-1B-Instruct-Finetuned-q4_k_m/pytorch_model.bin...\n", + "Done.\n", + "==((====))== Unsloth: Conversion from QLoRA to GGUF information\n", + " \\\\ /| [0] Installing llama.cpp will take 3 minutes.\n", + "O^O/ \\_/ \\ [1] Converting HF to GGUF 16bits will take 3 minutes.\n", + "\\ / [2] Converting GGUF 16bits to ['q4_k_m'] will take 10 minutes each.\n", + " \"-____-\" In total, you will have to wait at least 16 minutes.\n", + "\n", + "Unsloth: [0] Installing llama.cpp. This will take 3 minutes...\n", + "Unsloth: [1] Converting model at Robzy/Llama-3.2-1B-Instruct-Finetuned-q4_k_m into f16 GGUF format.\n", + "The output location will be /content/Robzy/Llama-3.2-1B-Instruct-Finetuned-q4_k_m/unsloth.F16.gguf\n", + "This will take 3 minutes...\n", + "INFO:hf-to-gguf:Loading model: Llama-3.2-1B-Instruct-Finetuned-q4_k_m\n", + "INFO:gguf.gguf_writer:gguf: This GGUF file is for Little Endian only\n", + "INFO:hf-to-gguf:Exporting model...\n", + "INFO:hf-to-gguf:rope_freqs.weight, torch.float32 --> F32, shape = {32}\n", + "INFO:hf-to-gguf:gguf: loading model part 'pytorch_model.bin'\n", + "INFO:hf-to-gguf:token_embd.weight, torch.float16 --> F16, shape = {2048, 128256}\n", + "INFO:hf-to-gguf:blk.0.attn_q.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.0.attn_k.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.0.attn_v.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.0.attn_output.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.0.ffn_gate.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.0.ffn_up.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.0.ffn_down.weight, torch.float16 --> F16, shape = {8192, 2048}\n", + "INFO:hf-to-gguf:blk.0.attn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.0.ffn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.1.attn_q.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.1.attn_k.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.1.attn_v.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.1.attn_output.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.1.ffn_gate.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.1.ffn_up.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.1.ffn_down.weight, torch.float16 --> F16, shape = {8192, 2048}\n", + "INFO:hf-to-gguf:blk.1.attn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.1.ffn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.2.attn_q.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.2.attn_k.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.2.attn_v.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.2.attn_output.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.2.ffn_gate.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.2.ffn_up.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.2.ffn_down.weight, torch.float16 --> F16, shape = {8192, 2048}\n", + "INFO:hf-to-gguf:blk.2.attn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.2.ffn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.3.attn_q.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.3.attn_k.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.3.attn_v.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.3.attn_output.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.3.ffn_gate.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.3.ffn_up.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.3.ffn_down.weight, torch.float16 --> F16, shape = {8192, 2048}\n", + "INFO:hf-to-gguf:blk.3.attn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.3.ffn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.4.attn_q.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.4.attn_k.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.4.attn_v.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.4.attn_output.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.4.ffn_gate.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.4.ffn_up.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.4.ffn_down.weight, torch.float16 --> F16, shape = {8192, 2048}\n", + "INFO:hf-to-gguf:blk.4.attn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.4.ffn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.5.attn_q.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.5.attn_k.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.5.attn_v.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.5.attn_output.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.5.ffn_gate.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.5.ffn_up.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.5.ffn_down.weight, torch.float16 --> F16, shape = {8192, 2048}\n", + "INFO:hf-to-gguf:blk.5.attn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.5.ffn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.6.attn_q.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.6.attn_k.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.6.attn_v.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.6.attn_output.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.6.ffn_gate.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.6.ffn_up.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.6.ffn_down.weight, torch.float16 --> F16, shape = {8192, 2048}\n", + "INFO:hf-to-gguf:blk.6.attn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.6.ffn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.7.attn_q.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.7.attn_k.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.7.attn_v.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.7.attn_output.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.7.ffn_gate.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.7.ffn_up.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.7.ffn_down.weight, torch.float16 --> F16, shape = {8192, 2048}\n", + "INFO:hf-to-gguf:blk.7.attn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.7.ffn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.8.attn_q.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.8.attn_k.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.8.attn_v.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.8.attn_output.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.8.ffn_gate.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.8.ffn_up.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.8.ffn_down.weight, torch.float16 --> F16, shape = {8192, 2048}\n", + "INFO:hf-to-gguf:blk.8.attn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.8.ffn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.9.attn_q.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.9.attn_k.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.9.attn_v.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.9.attn_output.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.9.ffn_gate.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.9.ffn_up.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.9.ffn_down.weight, torch.float16 --> F16, shape = {8192, 2048}\n", + "INFO:hf-to-gguf:blk.9.attn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.9.ffn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.10.attn_q.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.10.attn_k.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.10.attn_v.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.10.attn_output.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.10.ffn_gate.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.10.ffn_up.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.10.ffn_down.weight, torch.float16 --> F16, shape = {8192, 2048}\n", + "INFO:hf-to-gguf:blk.10.attn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.10.ffn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.11.attn_q.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.11.attn_k.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.11.attn_v.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.11.attn_output.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.11.ffn_gate.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.11.ffn_up.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.11.ffn_down.weight, torch.float16 --> F16, shape = {8192, 2048}\n", + "INFO:hf-to-gguf:blk.11.attn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.11.ffn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.12.attn_q.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.12.attn_k.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.12.attn_v.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.12.attn_output.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.12.ffn_gate.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.12.ffn_up.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.12.ffn_down.weight, torch.float16 --> F16, shape = {8192, 2048}\n", + "INFO:hf-to-gguf:blk.12.attn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.12.ffn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.13.attn_q.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.13.attn_k.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.13.attn_v.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.13.attn_output.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.13.ffn_gate.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.13.ffn_up.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.13.ffn_down.weight, torch.float16 --> F16, shape = {8192, 2048}\n", + "INFO:hf-to-gguf:blk.13.attn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.13.ffn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.14.attn_q.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.14.attn_k.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.14.attn_v.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.14.attn_output.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.14.ffn_gate.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.14.ffn_up.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.14.ffn_down.weight, torch.float16 --> F16, shape = {8192, 2048}\n", + "INFO:hf-to-gguf:blk.14.attn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.14.ffn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.15.attn_q.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.15.attn_k.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.15.attn_v.weight, torch.float16 --> F16, shape = {2048, 512}\n", + "INFO:hf-to-gguf:blk.15.attn_output.weight, torch.float16 --> F16, shape = {2048, 2048}\n", + "INFO:hf-to-gguf:blk.15.ffn_gate.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.15.ffn_up.weight, torch.float16 --> F16, shape = {2048, 8192}\n", + "INFO:hf-to-gguf:blk.15.ffn_down.weight, torch.float16 --> F16, shape = {8192, 2048}\n", + "INFO:hf-to-gguf:blk.15.attn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:blk.15.ffn_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:output_norm.weight, torch.float16 --> F32, shape = {2048}\n", + "INFO:hf-to-gguf:Set meta model\n", + "INFO:hf-to-gguf:Set model parameters\n", + "INFO:hf-to-gguf:gguf: context length = 131072\n", + "INFO:hf-to-gguf:gguf: embedding length = 2048\n", + "INFO:hf-to-gguf:gguf: feed forward length = 8192\n", + "INFO:hf-to-gguf:gguf: head count = 32\n", + "INFO:hf-to-gguf:gguf: key-value head count = 8\n", + "INFO:hf-to-gguf:gguf: rope theta = 500000.0\n", + "INFO:hf-to-gguf:gguf: rms norm epsilon = 1e-05\n", + "INFO:hf-to-gguf:gguf: file type = 1\n", + "INFO:hf-to-gguf:Set model tokenizer\n", + "INFO:gguf.vocab:Adding 280147 merge(s).\n", + "INFO:gguf.vocab:Setting special token type bos to 128000\n", + "INFO:gguf.vocab:Setting special token type eos to 128009\n", + "INFO:gguf.vocab:Setting special token type pad to 128004\n", + "INFO:gguf.vocab:Setting chat_template to {{- bos_token }}\n", + "{%- if custom_tools is defined %}\n", + " {%- set tools = custom_tools %}\n", + "{%- endif %}\n", + "{%- if not tools_in_user_message is defined %}\n", + " {%- set tools_in_user_message = true %}\n", + "{%- endif %}\n", + "{%- if not date_string is defined %}\n", + " {%- set date_string = \"26 July 2024\" %}\n", + "{%- endif %}\n", + "{%- if not tools is defined %}\n", + " {%- set tools = none %}\n", + "{%- endif %}\n", + "\n", + "{#- This block extracts the system message, so we can slot it into the right place. #}\n", + "{%- if messages[0]['role'] == 'system' %}\n", + " {%- set system_message = messages[0]['content'] %}\n", + " {%- set messages = messages[1:] %}\n", + "{%- else %}\n", + " {%- set system_message = \"\" %}\n", + "{%- endif %}\n", + "\n", + "{#- System message + builtin tools #}\n", + "{{- \"<|start_header_id|>system<|end_header_id|>\n", + "\n", + "\" }}\n", + "{%- if builtin_tools is defined or tools is not none %}\n", + " {{- \"Environment: ipython\n", + "\" }}\n", + "{%- endif %}\n", + "{%- if builtin_tools is defined %}\n", + " {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\n", + "\n", + "\"}}\n", + "{%- endif %}\n", + "{{- \"Cutting Knowledge Date: December 2023\n", + "\" }}\n", + "{{- \"Today Date: \" + date_string + \"\n", + "\n", + "\" }}\n", + "{%- if tools is not none and not tools_in_user_message %}\n", + " {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n", + " {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n", + " {{- \"Do not use variables.\n", + "\n", + "\" }}\n", + " {%- for t in tools %}\n", + " {{- t | tojson(indent=4) }}\n", + " {{- \"\n", + "\n", + "\" }}\n", + " {%- endfor %}\n", + "{%- endif %}\n", + "{{- system_message }}\n", + "{{- \"<|eot_id|>\" }}\n", + "\n", + "{#- Custom tools are passed in a user message with some extra guidance #}\n", + "{%- if tools_in_user_message and not tools is none %}\n", + " {#- Extract the first user message so we can plug it in here #}\n", + " {%- if messages | length != 0 %}\n", + " {%- set first_user_message = messages[0]['content'] %}\n", + " {%- set messages = messages[1:] %}\n", + " {%- else %}\n", + " {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n", + "{%- endif %}\n", + " {{- '<|start_header_id|>user<|end_header_id|>\n", + "\n", + "' -}}\n", + " {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n", + " {{- \"with its proper arguments that best answers the given prompt.\n", + "\n", + "\" }}\n", + " {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n", + " {{- \"Do not use variables.\n", + "\n", + "\" }}\n", + " {%- for t in tools %}\n", + " {{- t | tojson(indent=4) }}\n", + " {{- \"\n", + "\n", + "\" }}\n", + " {%- endfor %}\n", + " {{- first_user_message + \"<|eot_id|>\"}}\n", + "{%- endif %}\n", + "\n", + "{%- for message in messages %}\n", + " {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n", + " {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n", + "\n", + "'+ message['content'] + '<|eot_id|>' }}\n", + " {%- elif 'tool_calls' in message %}\n", + " {%- if not message.tool_calls|length == 1 %}\n", + " {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n", + " {%- endif %}\n", + " {%- set tool_call = message.tool_calls[0].function %}\n", + " {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n", + " {{- '<|start_header_id|>assistant<|end_header_id|>\n", + "\n", + "' -}}\n", + " {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n", + " {%- for arg_name, arg_val in tool_call.arguments | items %}\n", + " {{- arg_name + '=\"' + arg_val + '\"' }}\n", + " {%- if not loop.last %}\n", + " {{- \", \" }}\n", + " {%- endif %}\n", + " {%- endfor %}\n", + " {{- \")\" }}\n", + " {%- else %}\n", + " {{- '<|start_header_id|>assistant<|end_header_id|>\n", + "\n", + "' -}}\n", + " {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n", + " {{- '\"parameters\": ' }}\n", + " {{- tool_call.arguments | tojson }}\n", + " {{- \"}\" }}\n", + " {%- endif %}\n", + " {%- if builtin_tools is defined %}\n", + " {#- This means we're in ipython mode #}\n", + " {{- \"<|eom_id|>\" }}\n", + " {%- else %}\n", + " {{- \"<|eot_id|>\" }}\n", + " {%- endif %}\n", + " {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n", + " {{- \"<|start_header_id|>ipython<|end_header_id|>\n", + "\n", + "\" }}\n", + " {%- if message.content is mapping or message.content is iterable %}\n", + " {{- message.content | tojson }}\n", + " {%- else %}\n", + " {{- message.content }}\n", + " {%- endif %}\n", + " {{- \"<|eot_id|>\" }}\n", + " {%- endif %}\n", + "{%- endfor %}\n", + "{%- if add_generation_prompt %}\n", + " {{- '<|start_header_id|>assistant<|end_header_id|>\n", + "\n", + "' }}\n", + "{%- endif %}\n", + "\n", + "INFO:hf-to-gguf:Set model quantization version\n", + "INFO:gguf.gguf_writer:Writing the following files:\n", + "INFO:gguf.gguf_writer:/content/Robzy/Llama-3.2-1B-Instruct-Finetuned-q4_k_m/unsloth.F16.gguf: n_tensors = 147, total_size = 2.5G\n", + "Writing: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 2.47G/2.47G [00:36<00:00, 67.2Mbyte/s]\n", + "INFO:hf-to-gguf:Model successfully exported to /content/Robzy/Llama-3.2-1B-Instruct-Finetuned-q4_k_m/unsloth.F16.gguf\n", + "Unsloth: Conversion completed! Output location: /content/Robzy/Llama-3.2-1B-Instruct-Finetuned-q4_k_m/unsloth.F16.gguf\n", + "Unsloth: [2] Converting GGUF 16bit into q4_k_m. This will take 20 minutes...\n", + "main: build = 4227 (0533e7fb)\n", + "main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu\n", + "main: quantizing '/content/Robzy/Llama-3.2-1B-Instruct-Finetuned-q4_k_m/unsloth.F16.gguf' to '/content/Robzy/Llama-3.2-1B-Instruct-Finetuned-q4_k_m/unsloth.Q4_K_M.gguf' as Q4_K_M using 4 threads\n", + "llama_model_loader: loaded meta data with 30 key-value pairs and 147 tensors from /content/Robzy/Llama-3.2-1B-Instruct-Finetuned-q4_k_m/unsloth.F16.gguf (version GGUF V3 (latest))\n", + "llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", + "llama_model_loader: - kv 0: general.architecture str = llama\n", + "llama_model_loader: - kv 1: general.type str = model\n", + "llama_model_loader: - kv 2: general.name str = Llama 3.2 1b Instruct Bnb 4bit\n", + "llama_model_loader: - kv 3: general.organization str = Unsloth\n", + "llama_model_loader: - kv 4: general.finetune str = instruct-bnb-4bit\n", + "llama_model_loader: - kv 5: general.basename str = llama-3.2\n", + "llama_model_loader: - kv 6: general.size_label str = 1B\n", + "llama_model_loader: - kv 7: llama.block_count u32 = 16\n", + "llama_model_loader: - kv 8: llama.context_length u32 = 131072\n", + "llama_model_loader: - kv 9: llama.embedding_length u32 = 2048\n", + "llama_model_loader: - kv 10: llama.feed_forward_length u32 = 8192\n", + "llama_model_loader: - kv 11: llama.attention.head_count u32 = 32\n", + "llama_model_loader: - kv 12: llama.attention.head_count_kv u32 = 8\n", + "llama_model_loader: - kv 13: llama.rope.freq_base f32 = 500000.000000\n", + "llama_model_loader: - kv 14: llama.attention.layer_norm_rms_epsilon f32 = 0.000010\n", + "llama_model_loader: - kv 15: llama.attention.key_length u32 = 64\n", + "llama_model_loader: - kv 16: llama.attention.value_length u32 = 64\n", + "llama_model_loader: - kv 17: general.file_type u32 = 1\n", + "llama_model_loader: - kv 18: llama.vocab_size u32 = 128256\n", + "llama_model_loader: - kv 19: llama.rope.dimension_count u32 = 64\n", + "llama_model_loader: - kv 20: tokenizer.ggml.model str = gpt2\n", + "llama_model_loader: - kv 21: tokenizer.ggml.pre str = llama-bpe\n", + "llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,128256] = [\"!\", \"\\\"\", \"#\", \"$\", \"%\", \"&\", \"'\", ...\n", + "llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...\n", + "llama_model_loader: - kv 24: tokenizer.ggml.merges arr[str,280147] = [\"ฤ  ฤ \", \"ฤ  ฤ ฤ ฤ \", \"ฤ ฤ  ฤ ฤ \", \"...\n", + "llama_model_loader: - kv 25: tokenizer.ggml.bos_token_id u32 = 128000\n", + "llama_model_loader: - kv 26: tokenizer.ggml.eos_token_id u32 = 128009\n", + "llama_model_loader: - kv 27: tokenizer.ggml.padding_token_id u32 = 128004\n", + "llama_model_loader: - kv 28: tokenizer.chat_template str = {{- bos_token }}\\n{%- if custom_tools ...\n", + "llama_model_loader: - kv 29: general.quantization_version u32 = 2\n", + "llama_model_loader: - type f32: 34 tensors\n", + "llama_model_loader: - type f16: 113 tensors\n", + "[ 1/ 147] output_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 2/ 147] rope_freqs.weight - [ 32, 1, 1, 1], type = f32, size = 0.000 MB\n", + "[ 3/ 147] token_embd.weight - [ 2048, 128256, 1, 1], type = f16, converting to q6_K .. size = 501.00 MiB -> 205.49 MiB\n", + "[ 4/ 147] blk.0.attn_k.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 5/ 147] blk.0.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 6/ 147] blk.0.attn_output.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 7/ 147] blk.0.attn_q.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 8/ 147] blk.0.attn_v.weight - [ 2048, 512, 1, 1], type = f16, converting to q6_K .. size = 2.00 MiB -> 0.82 MiB\n", + "[ 9/ 147] blk.0.ffn_down.weight - [ 8192, 2048, 1, 1], type = f16, converting to q6_K .. size = 32.00 MiB -> 13.12 MiB\n", + "[ 10/ 147] blk.0.ffn_gate.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 11/ 147] blk.0.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 12/ 147] blk.0.ffn_up.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 13/ 147] blk.1.attn_k.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 14/ 147] blk.1.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 15/ 147] blk.1.attn_output.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 16/ 147] blk.1.attn_q.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 17/ 147] blk.1.attn_v.weight - [ 2048, 512, 1, 1], type = f16, converting to q6_K .. size = 2.00 MiB -> 0.82 MiB\n", + "[ 18/ 147] blk.1.ffn_down.weight - [ 8192, 2048, 1, 1], type = f16, converting to q6_K .. size = 32.00 MiB -> 13.12 MiB\n", + "[ 19/ 147] blk.1.ffn_gate.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 20/ 147] blk.1.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 21/ 147] blk.1.ffn_up.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 22/ 147] blk.2.attn_k.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 23/ 147] blk.2.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 24/ 147] blk.2.attn_output.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 25/ 147] blk.2.attn_q.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 26/ 147] blk.2.attn_v.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 27/ 147] blk.2.ffn_down.weight - [ 8192, 2048, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 28/ 147] blk.2.ffn_gate.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 29/ 147] blk.2.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 30/ 147] blk.2.ffn_up.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 31/ 147] blk.3.attn_k.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 32/ 147] blk.3.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 33/ 147] blk.3.attn_output.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 34/ 147] blk.3.attn_q.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 35/ 147] blk.3.attn_v.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 36/ 147] blk.3.ffn_down.weight - [ 8192, 2048, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 37/ 147] blk.3.ffn_gate.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 38/ 147] blk.3.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 39/ 147] blk.3.ffn_up.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 40/ 147] blk.4.attn_k.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 41/ 147] blk.4.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 42/ 147] blk.4.attn_output.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 43/ 147] blk.4.attn_q.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 44/ 147] blk.4.attn_v.weight - [ 2048, 512, 1, 1], type = f16, converting to q6_K .. size = 2.00 MiB -> 0.82 MiB\n", + "[ 45/ 147] blk.4.ffn_down.weight - [ 8192, 2048, 1, 1], type = f16, converting to q6_K .. size = 32.00 MiB -> 13.12 MiB\n", + "[ 46/ 147] blk.4.ffn_gate.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 47/ 147] blk.4.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 48/ 147] blk.4.ffn_up.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 49/ 147] blk.5.attn_k.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 50/ 147] blk.5.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 51/ 147] blk.5.attn_output.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 52/ 147] blk.5.attn_q.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 53/ 147] blk.5.attn_v.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 54/ 147] blk.5.ffn_down.weight - [ 8192, 2048, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 55/ 147] blk.5.ffn_gate.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 56/ 147] blk.5.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 57/ 147] blk.5.ffn_up.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 58/ 147] blk.6.attn_k.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 59/ 147] blk.6.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 60/ 147] blk.6.attn_output.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 61/ 147] blk.6.attn_q.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 62/ 147] blk.6.attn_v.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 63/ 147] blk.6.ffn_down.weight - [ 8192, 2048, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 64/ 147] blk.6.ffn_gate.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 65/ 147] blk.6.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 66/ 147] blk.6.ffn_up.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 67/ 147] blk.7.attn_k.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 68/ 147] blk.7.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 69/ 147] blk.7.attn_output.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 70/ 147] blk.7.attn_q.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 71/ 147] blk.7.attn_v.weight - [ 2048, 512, 1, 1], type = f16, converting to q6_K .. size = 2.00 MiB -> 0.82 MiB\n", + "[ 72/ 147] blk.7.ffn_down.weight - [ 8192, 2048, 1, 1], type = f16, converting to q6_K .. size = 32.00 MiB -> 13.12 MiB\n", + "[ 73/ 147] blk.7.ffn_gate.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 74/ 147] blk.7.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 75/ 147] blk.7.ffn_up.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 76/ 147] blk.8.attn_k.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 77/ 147] blk.8.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 78/ 147] blk.8.attn_output.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 79/ 147] blk.8.attn_q.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 80/ 147] blk.8.attn_v.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 81/ 147] blk.8.ffn_down.weight - [ 8192, 2048, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 82/ 147] blk.8.ffn_gate.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 83/ 147] blk.8.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 84/ 147] blk.8.ffn_up.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 85/ 147] blk.9.attn_k.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 86/ 147] blk.9.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 87/ 147] blk.9.attn_output.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 88/ 147] blk.9.attn_q.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 89/ 147] blk.9.attn_v.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 90/ 147] blk.9.ffn_down.weight - [ 8192, 2048, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 91/ 147] blk.9.ffn_gate.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 92/ 147] blk.9.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 93/ 147] blk.9.ffn_up.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 94/ 147] blk.10.attn_k.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 95/ 147] blk.10.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 96/ 147] blk.10.attn_output.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 97/ 147] blk.10.attn_q.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 98/ 147] blk.10.attn_v.weight - [ 2048, 512, 1, 1], type = f16, converting to q6_K .. size = 2.00 MiB -> 0.82 MiB\n", + "[ 99/ 147] blk.10.ffn_down.weight - [ 8192, 2048, 1, 1], type = f16, converting to q6_K .. size = 32.00 MiB -> 13.12 MiB\n", + "[ 100/ 147] blk.10.ffn_gate.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 101/ 147] blk.10.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 102/ 147] blk.10.ffn_up.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 103/ 147] blk.11.attn_k.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 104/ 147] blk.11.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 105/ 147] blk.11.attn_output.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 106/ 147] blk.11.attn_q.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 107/ 147] blk.11.attn_v.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 108/ 147] blk.11.ffn_down.weight - [ 8192, 2048, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 109/ 147] blk.11.ffn_gate.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 110/ 147] blk.11.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 111/ 147] blk.11.ffn_up.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 112/ 147] blk.12.attn_k.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 113/ 147] blk.12.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 114/ 147] blk.12.attn_output.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 115/ 147] blk.12.attn_q.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 116/ 147] blk.12.attn_v.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 117/ 147] blk.12.ffn_down.weight - [ 8192, 2048, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 118/ 147] blk.12.ffn_gate.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 119/ 147] blk.12.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 120/ 147] blk.12.ffn_up.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 121/ 147] blk.13.attn_k.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 122/ 147] blk.13.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 123/ 147] blk.13.attn_output.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 124/ 147] blk.13.attn_q.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 125/ 147] blk.13.attn_v.weight - [ 2048, 512, 1, 1], type = f16, converting to q6_K .. size = 2.00 MiB -> 0.82 MiB\n", + "[ 126/ 147] blk.13.ffn_down.weight - [ 8192, 2048, 1, 1], type = f16, converting to q6_K .. size = 32.00 MiB -> 13.12 MiB\n", + "[ 127/ 147] blk.13.ffn_gate.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 128/ 147] blk.13.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 129/ 147] blk.13.ffn_up.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 130/ 147] blk.14.attn_k.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 131/ 147] blk.14.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 132/ 147] blk.14.attn_output.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 133/ 147] blk.14.attn_q.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 134/ 147] blk.14.attn_v.weight - [ 2048, 512, 1, 1], type = f16, converting to q6_K .. size = 2.00 MiB -> 0.82 MiB\n", + "[ 135/ 147] blk.14.ffn_down.weight - [ 8192, 2048, 1, 1], type = f16, converting to q6_K .. size = 32.00 MiB -> 13.12 MiB\n", + "[ 136/ 147] blk.14.ffn_gate.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 137/ 147] blk.14.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 138/ 147] blk.14.ffn_up.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 139/ 147] blk.15.attn_k.weight - [ 2048, 512, 1, 1], type = f16, converting to q4_K .. size = 2.00 MiB -> 0.56 MiB\n", + "[ 140/ 147] blk.15.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 141/ 147] blk.15.attn_output.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 142/ 147] blk.15.attn_q.weight - [ 2048, 2048, 1, 1], type = f16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB\n", + "[ 143/ 147] blk.15.attn_v.weight - [ 2048, 512, 1, 1], type = f16, converting to q6_K .. size = 2.00 MiB -> 0.82 MiB\n", + "[ 144/ 147] blk.15.ffn_down.weight - [ 8192, 2048, 1, 1], type = f16, converting to q6_K .. size = 32.00 MiB -> 13.12 MiB\n", + "[ 145/ 147] blk.15.ffn_gate.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "[ 146/ 147] blk.15.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB\n", + "[ 147/ 147] blk.15.ffn_up.weight - [ 2048, 8192, 1, 1], type = f16, converting to q4_K .. size = 32.00 MiB -> 9.00 MiB\n", + "llama_model_quantize_internal: model size = 2357.26 MB\n", + "llama_model_quantize_internal: quant size = 762.81 MB\n", + "\n", + "main: quantize time = 167649.07 ms\n", + "main: total time = 167649.07 ms\n", + "Unsloth: Conversion completed! Output location: /content/Robzy/Llama-3.2-1B-Instruct-Finetuned-q4_k_m/unsloth.Q4_K_M.gguf\n", + "Unsloth: Uploading GGUF to Huggingface Hub...\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/1 [00:00\n", + " \n", + " \n", + " Support our work if you can! Thanks!\n", + "" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "4c3deec2baf94a8ea4c80478bdff01d3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bb975f0ad3d74a6395d1923c5a53dc39", + "IPY_MODEL_2a5dd426aafb4b3f9d793797abf7d9de", + "IPY_MODEL_2d6df02166fc4642b4bfdcc0cfd865a6" + ], + "layout": "IPY_MODEL_9505c5ed83394db6a5b343b0276d6901" + } + }, + "bb975f0ad3d74a6395d1923c5a53dc39": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_666f9103ec5c41bc891b05a901c616cf", + "placeholder": "โ€‹", + "style": "IPY_MODEL_e16037bafd8b454d8c434e85efed28dd", + "value": "model.safetensors:โ€‡100%" + } + }, + "2a5dd426aafb4b3f9d793797abf7d9de": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "danger", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_236a2e7c3a454f0c8a2ca24a0907255e", + "max": 1027676737, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7a132f9d1e3848f994f98609236a1b6f", + "value": 1027676639 + } + }, + "2d6df02166fc4642b4bfdcc0cfd865a6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a06ec7523d9744e297ff6338512360f9", + "placeholder": "โ€‹", + "style": "IPY_MODEL_1a1d139b772d441797ae128be73db0dc", + "value": "โ€‡1.03G/1.03Gโ€‡[00:06<00:00,โ€‡496MB/s]" + } + }, + "9505c5ed83394db6a5b343b0276d6901": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "666f9103ec5c41bc891b05a901c616cf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e16037bafd8b454d8c434e85efed28dd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "236a2e7c3a454f0c8a2ca24a0907255e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7a132f9d1e3848f994f98609236a1b6f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a06ec7523d9744e297ff6338512360f9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1a1d139b772d441797ae128be73db0dc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "31af95f1ac3544f7a37be67c4a034080": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4df2859b402941fc97d55070577fb97d", + "IPY_MODEL_e1adc042d1fb462ba6ff0aa78b4682a5", + "IPY_MODEL_8df3feb0d379485cb67359b331e8eadc" + ], + "layout": "IPY_MODEL_96d6f856c69a4345b91a882f28a1f4d6" + } + }, + "4df2859b402941fc97d55070577fb97d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_69cacfb40879486281c496c495b41a8b", + "placeholder": "โ€‹", + "style": "IPY_MODEL_31d2c055316e4437a7bd01c06cb305fb", + "value": "generation_config.json:โ€‡100%" + } + }, + "e1adc042d1fb462ba6ff0aa78b4682a5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0577e447b0c94726bc21517298ac2cb8", + "max": 184, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4d8ddbfb9856401cb197b932c8eb3c9c", + "value": 184 + } + }, + "8df3feb0d379485cb67359b331e8eadc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d3684e6bf5f84cee9d54db03d89e0e05", + "placeholder": "โ€‹", + "style": "IPY_MODEL_29c14add20b64cf9acc2615fe8059df2", + "value": "โ€‡184/184โ€‡[00:00<00:00,โ€‡9.94kB/s]" + } + }, + "96d6f856c69a4345b91a882f28a1f4d6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "69cacfb40879486281c496c495b41a8b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "31d2c055316e4437a7bd01c06cb305fb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0577e447b0c94726bc21517298ac2cb8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4d8ddbfb9856401cb197b932c8eb3c9c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d3684e6bf5f84cee9d54db03d89e0e05": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "29c14add20b64cf9acc2615fe8059df2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "eee9bc3f569b43d39e6f63306984095e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4e53974041184decb4264bd0106b290e", + "IPY_MODEL_9abb96ca74da49fa840c561590ada0d2", + "IPY_MODEL_1fce6848db9e4c85b70b2398015f91df" + ], + "layout": "IPY_MODEL_aac974f4fe8d418bb417ce72de56cc76" + } + }, + "4e53974041184decb4264bd0106b290e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_62d8bcccd42d4d2cb01f882aa77e2e93", + "placeholder": "โ€‹", + "style": "IPY_MODEL_f4e68d5f7ae846b78277ef7048b2d9fe", + "value": "tokenizer_config.json:โ€‡100%" + } + }, + "9abb96ca74da49fa840c561590ada0d2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_339ac2f6f46e478f92d976e66d0279e3", + "max": 54598, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4cb1776ddaab40a18f5429048986219b", + "value": 54598 + } + }, + "1fce6848db9e4c85b70b2398015f91df": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cd64808256fd49c4a487e7f9024655ee", + "placeholder": "โ€‹", + "style": "IPY_MODEL_9e36beaa7f344c2c9ce4f2267048445d", + "value": "โ€‡54.6k/54.6kโ€‡[00:00<00:00,โ€‡3.39MB/s]" + } + }, + "aac974f4fe8d418bb417ce72de56cc76": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "62d8bcccd42d4d2cb01f882aa77e2e93": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f4e68d5f7ae846b78277ef7048b2d9fe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "339ac2f6f46e478f92d976e66d0279e3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4cb1776ddaab40a18f5429048986219b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cd64808256fd49c4a487e7f9024655ee": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9e36beaa7f344c2c9ce4f2267048445d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f7d925b7a7bf4383a45446c860df582e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_343b5acebc4f40df8435009d864547af", + "IPY_MODEL_94b3f061f56e46d8855ed8b22a36723a", + "IPY_MODEL_8eae1393abeb4271b898031efafaa73b" + ], + "layout": "IPY_MODEL_b08feca372624beea25a04d51de239e6" + } + }, + "343b5acebc4f40df8435009d864547af": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7d31e8d7836a419cb1e86a770c23e156", + "placeholder": "โ€‹", + "style": "IPY_MODEL_31757a48490c472685daee4728207ae5", + "value": "tokenizer.json:โ€‡100%" + } + }, + "94b3f061f56e46d8855ed8b22a36723a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fa27d942953849569801a255609aabd8", + "max": 9085657, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_893496c19cbb48bc88faec4f564244a5", + "value": 9085657 + } + }, + "8eae1393abeb4271b898031efafaa73b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_43ba4aee4eba41f98711c0dd4885c3c9", + "placeholder": "โ€‹", + "style": "IPY_MODEL_6533fd4ecd1b4b1e8a234dee190bb1a7", + "value": "โ€‡9.09M/9.09Mโ€‡[00:00<00:00,โ€‡40.9MB/s]" + } + }, + "b08feca372624beea25a04d51de239e6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7d31e8d7836a419cb1e86a770c23e156": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "31757a48490c472685daee4728207ae5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fa27d942953849569801a255609aabd8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "893496c19cbb48bc88faec4f564244a5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "43ba4aee4eba41f98711c0dd4885c3c9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6533fd4ecd1b4b1e8a234dee190bb1a7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "aa83df54525940f6b0bda6541f7239a7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_930e448a64f445c9a68c7b9c50b94115", + "IPY_MODEL_429bdc8caf4f45bbbffaef73c77429e1", + "IPY_MODEL_49e32833321e41499050e07ff5a11f79" + ], + "layout": "IPY_MODEL_cf41ce1014eb4dceabe51497c7680167" + } + }, + "930e448a64f445c9a68c7b9c50b94115": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8fb8af69d4a342859cce7135cdfad95a", + "placeholder": "โ€‹", + "style": "IPY_MODEL_2292a009cfd04819b2baeeeb69aca17c", + "value": "special_tokens_map.json:โ€‡100%" + } + }, + "429bdc8caf4f45bbbffaef73c77429e1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7810fd97276e4192a0af08b5485f809c", + "max": 454, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1bd5bf129f304ad9a051eac47a6e33d4", + "value": 454 + } + }, + "49e32833321e41499050e07ff5a11f79": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5dc2fbc9d37f4a04a720a5b9ed3c6062", + "placeholder": "โ€‹", + "style": "IPY_MODEL_547dbb4d9a8144aea87ec148dad75989", + "value": "โ€‡454/454โ€‡[00:00<00:00,โ€‡22.9kB/s]" + } + }, + "cf41ce1014eb4dceabe51497c7680167": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8fb8af69d4a342859cce7135cdfad95a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2292a009cfd04819b2baeeeb69aca17c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7810fd97276e4192a0af08b5485f809c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1bd5bf129f304ad9a051eac47a6e33d4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5dc2fbc9d37f4a04a720a5b9ed3c6062": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "547dbb4d9a8144aea87ec148dad75989": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4ef2e9ed70594558b4bd281c7d6ca5d2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ee91f15ce7a7447b9b799f536f1457a9", + "IPY_MODEL_b48803411188408daf2a8fc02d53c8f4", + "IPY_MODEL_632df15c299c45ca99e54a96e7fd2043" + ], + "layout": "IPY_MODEL_e04f3dc11da4496c87f2551780a1eb75" + } + }, + "ee91f15ce7a7447b9b799f536f1457a9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d619b61774b0481eae38e76e8d67c814", + "placeholder": "โ€‹", + "style": "IPY_MODEL_541820d63c434329904588c4dddb75f5", + "value": "README.md:โ€‡100%" + } + }, + "b48803411188408daf2a8fc02d53c8f4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8b936eaf90804b16a87aaf107c592279", + "max": 982, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_38d3238f9ee143eb87137aa4fc91cf40", + "value": 982 + } + }, + "632df15c299c45ca99e54a96e7fd2043": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ce31f2dd6b9044ae9d076cc8a8396286", + "placeholder": "โ€‹", + "style": "IPY_MODEL_31222533a8284ec7ac2e446141dba9ff", + "value": "โ€‡982/982โ€‡[00:00<00:00,โ€‡14.8kB/s]" + } + }, + "e04f3dc11da4496c87f2551780a1eb75": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d619b61774b0481eae38e76e8d67c814": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "541820d63c434329904588c4dddb75f5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8b936eaf90804b16a87aaf107c592279": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "38d3238f9ee143eb87137aa4fc91cf40": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ce31f2dd6b9044ae9d076cc8a8396286": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "31222533a8284ec7ac2e446141dba9ff": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5396fefacb2347f38112242a0305dd6a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bfa4248cf9d841f0911419d114e60e24", + "IPY_MODEL_7aa5fee3a54f491bb7c9f252c56bf05e", + "IPY_MODEL_75c5837c4c83417f930424649dae7a3e" + ], + "layout": "IPY_MODEL_2f4b5f095da44c8e9e5278c41c11ac37" + } + }, + "bfa4248cf9d841f0911419d114e60e24": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ea3657d821634d37b112cc0e94ae9295", + "placeholder": "โ€‹", + "style": "IPY_MODEL_266f0114d58c4bbf9aa1f604df52d2a2", + "value": "train-00000-of-00001.parquet:โ€‡100%" + } + }, + "7aa5fee3a54f491bb7c9f252c56bf05e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "danger", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_794ae2a3bf744fa5900c42fe628389b4", + "max": 116531415, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e69d7656f4c541fea7a6b9fe3c088462", + "value": 116531404 + } + }, + "75c5837c4c83417f930424649dae7a3e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a0db3c5db7664185b44e37d975fb917c", + "placeholder": "โ€‹", + "style": "IPY_MODEL_0b3000219b5349b28213a108f67e8517", + "value": "โ€‡117M/117Mโ€‡[00:01<00:00,โ€‡112MB/s]" + } + }, + "2f4b5f095da44c8e9e5278c41c11ac37": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ea3657d821634d37b112cc0e94ae9295": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "266f0114d58c4bbf9aa1f604df52d2a2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "794ae2a3bf744fa5900c42fe628389b4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e69d7656f4c541fea7a6b9fe3c088462": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a0db3c5db7664185b44e37d975fb917c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0b3000219b5349b28213a108f67e8517": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e2f4b572569e4aedbd4a0efac9156d67": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ed566d0f5c074fa698e882210a1fd4ea", + "IPY_MODEL_4d146134b7304beb967ee3dea28d05ff", + "IPY_MODEL_b679084ddb2e46a48658d76afd22cb5c" + ], + "layout": "IPY_MODEL_b157ac6dd5bf4c2eacf03921bd3ee318" + } + }, + "ed566d0f5c074fa698e882210a1fd4ea": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_56a48a0353c148e88796bc1e7a70440b", + "placeholder": "โ€‹", + "style": "IPY_MODEL_8ea199ab8df346ab863f928d3e9dbcdb", + "value": "Generatingโ€‡trainโ€‡split:โ€‡100%" + } + }, + "4d146134b7304beb967ee3dea28d05ff": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7858c79373064059bacc8275e3687bf8", + "max": 100000, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3706f26b7fdb4b61b931e86aca398711", + "value": 100000 + } + }, + "b679084ddb2e46a48658d76afd22cb5c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a1833e5ec6604e7395429d7ccd119fa6", + "placeholder": "โ€‹", + "style": "IPY_MODEL_13ec5d369fbd4f7e8fcca76f69073817", + "value": "โ€‡100000/100000โ€‡[00:02<00:00,โ€‡31002.06โ€‡examples/s]" + } + }, + "b157ac6dd5bf4c2eacf03921bd3ee318": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "56a48a0353c148e88796bc1e7a70440b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8ea199ab8df346ab863f928d3e9dbcdb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7858c79373064059bacc8275e3687bf8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3706f26b7fdb4b61b931e86aca398711": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a1833e5ec6604e7395429d7ccd119fa6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "13ec5d369fbd4f7e8fcca76f69073817": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "812ebb70dc004c7e927f17e2fbccee32": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1e9071a14a784d1f815083ee90a42607", + "IPY_MODEL_532d7d7d9d0e4fc481afd1c67b22b36d", + "IPY_MODEL_a1250e16080049f685b127b273d404a4" + ], + "layout": "IPY_MODEL_3bf12a7280c947f49c9b02fce942a010" + } + }, + "1e9071a14a784d1f815083ee90a42607": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c257db8e607040e4862916035607bf19", + "placeholder": "โ€‹", + "style": "IPY_MODEL_73ac6107e4184349b01db9bcd7b2702d", + "value": "Standardizingโ€‡format:โ€‡100%" + } + }, + "532d7d7d9d0e4fc481afd1c67b22b36d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_711f473e57984072b78c49e3bdefcfdb", + "max": 100000, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0467ea1f1fbc436189e74d470b8734c8", + "value": 100000 + } + }, + "a1250e16080049f685b127b273d404a4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e0634a92b5d04d66b94e846d1cbfbdeb", + "placeholder": "โ€‹", + "style": "IPY_MODEL_25a2d2313408464ab7c3975dac67f7ea", + "value": "โ€‡100000/100000โ€‡[00:10<00:00,โ€‡12315.26โ€‡examples/s]" + } + }, + "3bf12a7280c947f49c9b02fce942a010": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c257db8e607040e4862916035607bf19": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "73ac6107e4184349b01db9bcd7b2702d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "711f473e57984072b78c49e3bdefcfdb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0467ea1f1fbc436189e74d470b8734c8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e0634a92b5d04d66b94e846d1cbfbdeb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "25a2d2313408464ab7c3975dac67f7ea": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7f813ef411164c409b824048045629c4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cd5cb20e39bf4100a04d742367f6b471", + "IPY_MODEL_8b8ac219964d46aaa95a26a6158ff105", + "IPY_MODEL_a7879fa411a44c1c8659c1cdbb4af836" + ], + "layout": "IPY_MODEL_7a744664d9cd47a3940b8cdcec843931" + } + }, + "cd5cb20e39bf4100a04d742367f6b471": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ae0a7038c08440859b9b196e808ec061", + "placeholder": "โ€‹", + "style": "IPY_MODEL_5d52bb8d317e47e9a3116870a1966c6e", + "value": "Map:โ€‡100%" + } + }, + "8b8ac219964d46aaa95a26a6158ff105": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7939f216c0f04b77b3d40045faa39722", + "max": 100000, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e530f33144544ebbbb82474834d20684", + "value": 100000 + } + }, + "a7879fa411a44c1c8659c1cdbb4af836": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7771f6f8459948d88c381122cc04e1c7", + "placeholder": "โ€‹", + "style": "IPY_MODEL_42ed2466e0dd46a98d49f4afa3f06a69", + "value": "โ€‡100000/100000โ€‡[00:15<00:00,โ€‡10944.67โ€‡examples/s]" + } + }, + "7a744664d9cd47a3940b8cdcec843931": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ae0a7038c08440859b9b196e808ec061": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5d52bb8d317e47e9a3116870a1966c6e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7939f216c0f04b77b3d40045faa39722": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e530f33144544ebbbb82474834d20684": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7771f6f8459948d88c381122cc04e1c7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "42ed2466e0dd46a98d49f4afa3f06a69": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5861c997f06a4956ba05647bad0ca368": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_52e2667aa16c4b52aa9c602d4b8ee398", + "IPY_MODEL_e90e270c6fd948f281f43205d18cc4db", + "IPY_MODEL_a3f9a1468ac84a5a91f0114900d7d4d5" + ], + "layout": "IPY_MODEL_1d02b96ef30249f38b9dadd9159ea936" + } + }, + "52e2667aa16c4b52aa9c602d4b8ee398": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dc32c3f442d84e9dbda13be6a6ce3352", + "placeholder": "โ€‹", + "style": "IPY_MODEL_1b6a38357e584a7a824f29f0868a8575", + "value": "Mapโ€‡(num_proc=4):โ€‡100%" + } + }, + "e90e270c6fd948f281f43205d18cc4db": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a1267f96544242659062f9311f9bf9a2", + "max": 100000, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7929f417cde840fc909e6fecb2a65ca1", + "value": 100000 + } + }, + "a3f9a1468ac84a5a91f0114900d7d4d5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6c3fcbd4e51740118fe65dd5626aab40", + "placeholder": "โ€‹", + "style": "IPY_MODEL_f6b3e230eb2b446dbf2eb5737c0128da", + "value": "โ€‡100000/100000โ€‡[04:24<00:00,โ€‡347.99โ€‡examples/s]" + } + }, + "1d02b96ef30249f38b9dadd9159ea936": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dc32c3f442d84e9dbda13be6a6ce3352": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1b6a38357e584a7a824f29f0868a8575": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a1267f96544242659062f9311f9bf9a2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7929f417cde840fc909e6fecb2a65ca1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6c3fcbd4e51740118fe65dd5626aab40": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f6b3e230eb2b446dbf2eb5737c0128da": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c59cd7a65f8f4036b96276b2cf2bd00f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bfeb81731e1b477a9bf69caba3feadd2", + "IPY_MODEL_47c96b8cae35465fb3899d3987476766", + "IPY_MODEL_f09f0425e65b43148b634adad9edc3c2" + ], + "layout": "IPY_MODEL_fc25fc3c647a4d858d6ab01c0d2bffa5" + } + }, + "bfeb81731e1b477a9bf69caba3feadd2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_40dfc0ad2e854bea859ad18142d506de", + "placeholder": "โ€‹", + "style": "IPY_MODEL_b407473976fb4bab9933b9d7e89b584a", + "value": "Map:โ€‡100%" + } + }, + "47c96b8cae35465fb3899d3987476766": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_93be6e157d56441f83089795021133ea", + "max": 100000, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_04b8c446b98e48e79a7654002dd8fa79", + "value": 100000 + } + }, + "f09f0425e65b43148b634adad9edc3c2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_582293c1ec6f440885275491144463ab", + "placeholder": "โ€‹", + "style": "IPY_MODEL_5dc55a3d72e14e2f964560b37282a788", + "value": "โ€‡100000/100000โ€‡[01:01<00:00,โ€‡2004.36โ€‡examples/s]" + } + }, + "fc25fc3c647a4d858d6ab01c0d2bffa5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "40dfc0ad2e854bea859ad18142d506de": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b407473976fb4bab9933b9d7e89b584a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "93be6e157d56441f83089795021133ea": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "04b8c446b98e48e79a7654002dd8fa79": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "582293c1ec6f440885275491144463ab": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5dc55a3d72e14e2f964560b37282a788": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d6accc4038424f5fbfcc8c54762ec8ca": { + "model_module": "@jupyter-widgets/controls", + "model_name": "VBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "VBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "VBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bfd14116621b448ea29e716b0dd41492", + "IPY_MODEL_597b6317dd954285814f1d80c817a683" + ], + "layout": "IPY_MODEL_1689c268efe84d9c8fa8bae7871e5c09" + } + }, + "bfd14116621b448ea29e716b0dd41492": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_566c9df6d64149cea2c47f04a631fac7", + "placeholder": "โ€‹", + "style": "IPY_MODEL_2c804df2de23445b8a8f746b86897e77", + "value": "146.766 MB of 146.766 MB uploaded\r" + } + }, + "597b6317dd954285814f1d80c817a683": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_99bd1c24e6674d20b17372d090cbac05", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_bfa5e6218f91406483b601ff48a677e3", + "value": 1 + } + }, + "1689c268efe84d9c8fa8bae7871e5c09": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "566c9df6d64149cea2c47f04a631fac7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2c804df2de23445b8a8f746b86897e77": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "99bd1c24e6674d20b17372d090cbac05": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bfa5e6218f91406483b601ff48a677e3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9ffdda8f9c5743d3ad68d7ac04836005": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b546cf0dd67341d0ab800c24d0d64f5e", + "IPY_MODEL_7753719d5b5e42cb9be5885022331912", + "IPY_MODEL_f7dfa3fc06344c089688036d578b1885" + ], + "layout": "IPY_MODEL_24a33ba11104499d8dab96238ed6874c" + } + }, + "b546cf0dd67341d0ab800c24d0d64f5e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_eb7863aa333d404987033d2766d759ca", + "placeholder": "โ€‹", + "style": "IPY_MODEL_a787d6060cd34e6e8a8862857a4e6109", + "value": "README.md:โ€‡100%" + } + }, + "7753719d5b5e42cb9be5885022331912": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_92a836db3d8f43d3830c799ae716b633", + "max": 594, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_07dddca6c2024c3b883e794062e50991", + "value": 594 + } + }, + "f7dfa3fc06344c089688036d578b1885": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3efbb924cbc94df6b4f40d0fc2579965", + "placeholder": "โ€‹", + "style": "IPY_MODEL_6939625444fc4441b0572bb97bb15937", + "value": "โ€‡594/594โ€‡[00:00<00:00,โ€‡31.8kB/s]" + } + }, + "24a33ba11104499d8dab96238ed6874c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eb7863aa333d404987033d2766d759ca": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a787d6060cd34e6e8a8862857a4e6109": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "92a836db3d8f43d3830c799ae716b633": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "07dddca6c2024c3b883e794062e50991": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3efbb924cbc94df6b4f40d0fc2579965": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6939625444fc4441b0572bb97bb15937": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "561ecd47a1ff4767ad1e17d8e08f3520": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c2c9eb9167e14896a46d948e59fde31e", + "IPY_MODEL_b8136af993a94cfab591d4e803d19785", + "IPY_MODEL_bd14eaf3d91641eea6f575f1a8bf92b1" + ], + "layout": "IPY_MODEL_d2d14b1077ec4f5e8aa8a4a7e4235141" + } + }, + "c2c9eb9167e14896a46d948e59fde31e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f768e8ca2c2a42f888b5bd899612edfd", + "placeholder": "โ€‹", + "style": "IPY_MODEL_acc685df3e0e4cf4ad23e3ac47186e1c", + "value": "100%" + } + }, + "b8136af993a94cfab591d4e803d19785": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f1cde7f63e794b02ad03c0dbd1e6de2d", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7e2cb29d01954118b1e1f96f77195723", + "value": 1 + } + }, + "bd14eaf3d91641eea6f575f1a8bf92b1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5f750c954a054f9495ba31e4c67fb11d", + "placeholder": "โ€‹", + "style": "IPY_MODEL_74d9c8a3f9dd46cb9463a69edb81e060", + "value": "โ€‡1/1โ€‡[00:02<00:00,โ€‡โ€‡2.88s/it]" + } + }, + "d2d14b1077ec4f5e8aa8a4a7e4235141": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f768e8ca2c2a42f888b5bd899612edfd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "acc685df3e0e4cf4ad23e3ac47186e1c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f1cde7f63e794b02ad03c0dbd1e6de2d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7e2cb29d01954118b1e1f96f77195723": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5f750c954a054f9495ba31e4c67fb11d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "74d9c8a3f9dd46cb9463a69edb81e060": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e7369f1637ba4ee29fd1b927fb4d7676": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bd0cd3ea500c4a33aa883cf976da141a", + "IPY_MODEL_1ce0936c2aa549ae902374ce31d47be0", + "IPY_MODEL_c1e66d4831b74997afc9b199464cdff7" + ], + "layout": "IPY_MODEL_b1c220c35b26431ebb1772d7c64626e6" + } + }, + "bd0cd3ea500c4a33aa883cf976da141a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2dd1298568c24417911a1810c4e89122", + "placeholder": "โ€‹", + "style": "IPY_MODEL_9a3cb949f94c4ed091cab2a114c6e29e", + "value": "adapter_model.safetensors:โ€‡" + } + }, + "1ce0936c2aa549ae902374ce31d47be0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cdcbb5332d96412db375e495742665ef", + "max": 45118424, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_bc33c568986e4663aca6a11e9bd4de16", + "value": 45118424 + } + }, + "c1e66d4831b74997afc9b199464cdff7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_97c4468ff7384d019ba7f5acaf4cc5a9", + "placeholder": "โ€‹", + "style": "IPY_MODEL_e180aa9d9c394236ae61e32715a0e60f", + "value": "โ€‡48.0M/?โ€‡[00:02<00:00,โ€‡6.62MB/s]" + } + }, + "b1c220c35b26431ebb1772d7c64626e6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2dd1298568c24417911a1810c4e89122": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9a3cb949f94c4ed091cab2a114c6e29e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cdcbb5332d96412db375e495742665ef": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bc33c568986e4663aca6a11e9bd4de16": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "97c4468ff7384d019ba7f5acaf4cc5a9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e180aa9d9c394236ae61e32715a0e60f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "dfdc111bbf64426bb3cc3f1743dd30f9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c7c0301758244604baadf96b487ed369", + "IPY_MODEL_b5f8e89742104bf88e07281d796402d3", + "IPY_MODEL_e8e4073ade4549f1a8c02f75f26a6a24" + ], + "layout": "IPY_MODEL_7843923bd0a24c9a831c57be9c00a86c" + } + }, + "c7c0301758244604baadf96b487ed369": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f934af809a40455b8dce4b87a6fc3dba", + "placeholder": "โ€‹", + "style": "IPY_MODEL_6a89fc221533445bb36c3e6bda1f0c5d", + "value": "README.md:โ€‡100%" + } + }, + "b5f8e89742104bf88e07281d796402d3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_438a3692d4aa4f109add67c89482f880", + "max": 5181, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e3d5b65a9db04bbc9035f0afb86e0d7e", + "value": 5181 + } + }, + "e8e4073ade4549f1a8c02f75f26a6a24": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0d309915b27244f1b55c849e168af607", + "placeholder": "โ€‹", + "style": "IPY_MODEL_dd44275d92be413a8aa9f74a8c282d5c", + "value": "โ€‡5.18k/5.18kโ€‡[00:00<00:00,โ€‡270kB/s]" + } + }, + "7843923bd0a24c9a831c57be9c00a86c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f934af809a40455b8dce4b87a6fc3dba": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6a89fc221533445bb36c3e6bda1f0c5d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "438a3692d4aa4f109add67c89482f880": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e3d5b65a9db04bbc9035f0afb86e0d7e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0d309915b27244f1b55c849e168af607": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dd44275d92be413a8aa9f74a8c282d5c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ade4b4c1ee22436c9b85356243a50485": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_32da6c3892244f43b63e6367a5d46786", + "IPY_MODEL_23c56d5c74a647f1b7a7e27914b4536a", + "IPY_MODEL_cd82a504a6ad4a5190c8e386436019cf" + ], + "layout": "IPY_MODEL_379785fe7af442dcb697d68cac807a86" + } + }, + "32da6c3892244f43b63e6367a5d46786": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8c719f03a3ed42a6b5e74251d2a88cf1", + "placeholder": "โ€‹", + "style": "IPY_MODEL_5bcb82d8e1694e218582449d041557dc", + "value": "100%" + } + }, + "23c56d5c74a647f1b7a7e27914b4536a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_74b7ec150d1446b28fe11790dea287c7", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_33184c9b6a4a44ff836da7203256c816", + "value": 1 + } + }, + "cd82a504a6ad4a5190c8e386436019cf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e11365da21304c02a45a5c9adf2a44da", + "placeholder": "โ€‹", + "style": "IPY_MODEL_2552d10b8fba4ea3a004e24adf612dcb", + "value": "โ€‡1/1โ€‡[00:08<00:00,โ€‡โ€‡8.15s/it]" + } + }, + "379785fe7af442dcb697d68cac807a86": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8c719f03a3ed42a6b5e74251d2a88cf1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5bcb82d8e1694e218582449d041557dc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "74b7ec150d1446b28fe11790dea287c7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "33184c9b6a4a44ff836da7203256c816": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e11365da21304c02a45a5c9adf2a44da": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2552d10b8fba4ea3a004e24adf612dcb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6ce199a077814319a6de805eda52df2b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_faf4e352836e44cda599df406d941b20", + "IPY_MODEL_216f8da7d8194fa0894169a55e770657", + "IPY_MODEL_2ab662f6640349d6b829472c6cdc8f53" + ], + "layout": "IPY_MODEL_ebb9c1711d334cdfb9e89ed227519e94" + } + }, + "faf4e352836e44cda599df406d941b20": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ab9cd76dbbc34df4a148cd3593af7d4f", + "placeholder": "โ€‹", + "style": "IPY_MODEL_f3e45682c0564513a9184619ead4c771", + "value": "unsloth.Q4_K_M.gguf:โ€‡" + } + }, + "216f8da7d8194fa0894169a55e770657": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1d2300dba31d4753805eb3b9db8c6910", + "max": 807694720, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_15bd7445a49d45cb95fc704662d3cd04", + "value": 807694720 + } + }, + "2ab662f6640349d6b829472c6cdc8f53": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_be543450da1340d0b775184f5bb99dd3", + "placeholder": "โ€‹", + "style": "IPY_MODEL_28b4ae40aee14e599925e248ff1b68e7", + "value": "โ€‡816M/?โ€‡[00:07<00:00,โ€‡320MB/s]" + } + }, + "ebb9c1711d334cdfb9e89ed227519e94": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ab9cd76dbbc34df4a148cd3593af7d4f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f3e45682c0564513a9184619ead4c771": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1d2300dba31d4753805eb3b9db8c6910": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "15bd7445a49d45cb95fc704662d3cd04": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "be543450da1340d0b775184f5bb99dd3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "28b4ae40aee14e599925e248ff1b68e7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file