import gradio as gr from llama_cpp import Llama # Load models llm = Llama.from_pretrained( repo_id="Robzy/lora_model_CodeData_120k", filename="unsloth.Q4_K_M.gguf", ) llm2 = Llama.from_pretrained( repo_id="Robzy/lora_model_CodeData_120k", filename="unsloth.Q5_K_M.gguf", ) llm3 = Llama.from_pretrained( repo_id="Robzy/lora_model_CodeData_120k", filename="unsloth.Q8_0.gguf", ) # Define prediction functions def predict(message, history, model): messages = [{"role": "system", "content": "You are a helpful assistant."}] for user_message, bot_message in history: if user_message: messages.append({"role": "user", "content": user_message}) if bot_message: messages.append({"role": "assistant", "content": bot_message}) messages.append({"role": "user", "content": message}) response = "" for chunk in llm.create_chat_completion( stream=True, messages=messages, ): part = chunk["choices"][0]["delta"].get("content", None) if part: response += part yield response def predict2(message, history, model): messages = [{"role": "system", "content": "You are a helpful assistant."}] for user_message, bot_message in history: if user_message: messages.append({"role": "user", "content": user_message}) if bot_message: messages.append({"role": "assistant", "content": bot_message}) messages.append({"role": "user", "content": message}) response = "" for chunk in llm2.create_chat_completion( stream=True, messages=messages, ): part = chunk["choices"][0]["delta"].get("content", None) if part: response += part yield response def predict3(message, history, model): messages = [{"role": "system", "content": "You are a helpful assistant."}] for user_message, bot_message in history: if user_message: messages.append({"role": "user", "content": user_message}) if bot_message: messages.append({"role": "assistant", "content": bot_message}) messages.append({"role": "user", "content": message}) response = "" for chunk in llm3.create_chat_completion( stream=True, messages=messages, ): part = chunk["choices"][0]["delta"].get("content", None) if part: response += part yield response # Define ChatInterfaces io1 = gr.ChatInterface(predict, title="4-bit") io2 = gr.ChatInterface(predict2, title="5-bit") # Placeholder io3 = gr.ChatInterface(predict3, title="8-bit") # Dropdown and visibility mapping chat_interfaces = {"4-bit": io1, "5-bit": io2, "8-bit": io3} # Define UI with gr.Blocks() as demo: gr.Markdown("# Quantized Llama Comparison for Code Generation") with gr.Tab("4-bit"): io1.render() with gr.Tab("5-bit"): io2.render() with gr.Tab("8-bit"): io3.render() demo.launch()