--- title: quantized-LLM comparison emoji: 💬 colorFrom: yellow colorTo: purple sdk: gradio sdk_version: 5.0.1 app_file: app.py pinned: false short_descriptions: Fine-tuned Llama-3.2-1B-Instruct with different quantizations --- An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index). ### [HuggingFace Space with Quantized LLMs](https://huggingface.co/spaces/Robzy/llm) **Baseline model**: Llama-3.2-1B-Instruct with 4-bit quantization **Training infrastracture**: * Google Colab with NVIDIA Tesla T4 GPU * Finetuning with parameter-effecient finetuning (PEFT) by low-rank adaption (LORA) using Unsloth and HuggingFace's supervised finetuning libraries. * Weight & Biases for model training monitoring and model checkpointing. Checkpointing every 10 steps. **Finetuning details** **Datasets**: * [Code instructions Alpaca 120k](https://huggingface.co/datasets/iamtarun/code_instructions_120k_alpaca)