RogerB's picture
Create app.py
cb8f34b
import gradio as gr
from transformers import pipeline
from huggingface_hub import notebook_login
import re
import requests
import json
import detectlanguage
from detectlanguage import simple_detect
# use this link to get your api key https://detectlanguage.com/
detectlanguage.configuration.api_key = "d0aeb9f0050c99468ee7e3319ff4695f"
detectlanguage.configuration.secure = True
def preprocessing(sentence):
# remove @user and adjust the sentence
text = sentence.lower().strip()
# remove punctuations
text = re.sub(r'[^\w\s]', '', str(text)).strip()
# remove links
text = re.sub(r'https?://\S+|www\.\S+', '',text).strip()
# remove hidden links
text = re.sub(r'(?:https?\S+)','',text).strip()
# remove emojis
text = re.sub(r'[\U0001f600-\U0001f650]', '', text).strip()
# remove digits
text = re.sub(r'[\d]','',text).strip()
return text
def translate(text : str , target_lang : str, source_lang : str):
"""
Params: Receives Texts, target language, source language code
ruturn: translated Text
"""
api_url = "https://translate.googleapis.com/translate_a/single"
client = "?client=gtx&dt=t"
dt = "&dt=t"
sl = f"&sl={source_lang}"
tl = f"&tl={target_lang}"
r = requests.get(api_url+ client + dt + sl + tl + "&q=" + text)
return json.loads(r.text)[0][0][0]
specific_model = pipeline("sentiment-analysis", model="RogerB/kin-sentiC")
def greet(sentence):
text = preprocessing(sentence)
source_lang = simple_detect(text)
if text == 'rw':
label = specific_model(text)
return {label[0]['label']:label[0]['score']}
else:
try:
text = translate(text, target_lang='rw', source_lang=source_lang)
label = specific_model(text)
return {label[0]['label']:label[0]['score']}
except json.JSONDecodeError:
label = specific_model(text)
return {label[0]['label']:label[0]['score']}
demo = gr.Interface(fn=greet, inputs="text", outputs="label",title="Multilingual Sentiment Anaysis context of Kinyarwanda Tweets")
demo.launch(debug=False)