File size: 8,294 Bytes
3dba9d4
 
 
 
b4f1e5a
3dba9d4
d864fc1
d44c6d5
3dba9d4
b4f1e5a
3dba9d4
d864fc1
3dba9d4
b4f1e5a
d44c6d5
 
 
 
 
b4f1e5a
 
3dba9d4
 
 
 
 
 
d864fc1
 
 
b4f1e5a
 
 
 
 
 
 
 
 
 
3dba9d4
 
 
 
 
b4f1e5a
 
27e6d88
 
 
909dbdf
27e6d88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4f1e5a
27e6d88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4f1e5a
27e6d88
 
 
 
 
3dba9d4
27e6d88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4f1e5a
27e6d88
 
 
 
 
 
 
 
 
 
3dba9d4
27e6d88
 
 
 
 
 
 
 
 
 
 
 
 
d864fc1
27e6d88
 
 
 
 
b4f1e5a
27e6d88
b4f1e5a
27e6d88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dba9d4
 
27e6d88
 
b4f1e5a
27e6d88
 
 
 
 
 
3dba9d4
27e6d88
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import gradio as gr
import numpy as np
import os
import time
import torch
from scipy.io import wavfile
import soundfile as sf
import datasets

# Bark imports
from bark import generate_audio, SAMPLE_RATE
from bark.generation import preload_models, generate_text_semantic

# Hugging Face Transformers
from transformers import (
    SpeechT5HifiGan, 
    SpeechT5ForTextToSpeech, 
    SpeechT5Processor
)

class VoiceSynthesizer:
    def __init__(self):
        # Create working directory
        self.base_dir = os.path.dirname(os.path.abspath(__file__))
        self.working_dir = os.path.join(self.base_dir, "working_files")
        os.makedirs(self.working_dir, exist_ok=True)
        
        # Store reference voice
        self.reference_voice = None
        
        # Initialize models dictionary
        self.models = {
            "bark": self._initialize_bark,
            "speecht5": self._initialize_speecht5
        }
        
        # Default model
        self.current_model = "bark"
        
        # Initialize Bark models
        try:
            print("Attempting to load Bark models...")
            preload_models()
            print("Bark models loaded successfully.")
        except Exception as e:
            print(f"Bark model loading error: {e}")
    
    def _initialize_bark(self):
        """Bark model initialization (already done in __init__)"""
        return None
    
    def _initialize_speecht5(self):
        """Initialize SpeechT5 model from Hugging Face"""
        try:
            # Load SpeechT5 model and processor
            model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
            processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
            vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
            
            # Load speaker embeddings
            embeddings_dataset = datasets.load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
            speaker_embeddings = torch.tensor(embeddings_dataset[0]["xvector"]).unsqueeze(0)
            
            return {
                "model": model,
                "processor": processor,
                "vocoder": vocoder,
                "speaker_embeddings": speaker_embeddings
            }
        except Exception as e:
            print(f"SpeechT5 model loading error: {e}")
            return None
    
    def process_reference_audio(self, reference_audio):
        """Process and store reference audio for voice cloning"""
        try:
            # Gradio can pass audio in different formats
            if reference_audio is None:
                return "No audio provided"
            
            # Handle different input types
            if isinstance(reference_audio, tuple):
                # Gradio typically returns (sample_rate, audio_array)
                if len(reference_audio) == 2:
                    sample_rate, audio_data = reference_audio
                else:
                    audio_data = reference_audio[0]
                    sample_rate = SAMPLE_RATE  # Default to Bark sample rate
            elif isinstance(reference_audio, np.ndarray):
                audio_data = reference_audio
                sample_rate = SAMPLE_RATE
            else:
                return "Invalid audio format"
            
            # Ensure audio is numpy array
            audio_data = np.asarray(audio_data)
            
            # Handle multi-channel audio
            if audio_data.ndim > 1:
                audio_data = audio_data.mean(axis=1)
            
            # Trim or pad to standard length
            max_duration = 10  # 10 seconds
            max_samples = max_duration * sample_rate
            
            if len(audio_data) > max_samples:
                audio_data = audio_data[:max_samples]
            
            # Resample if necessary
            if sample_rate != SAMPLE_RATE:
                from scipy.signal import resample
                audio_data = resample(audio_data, int(len(audio_data) * SAMPLE_RATE / sample_rate))
            
            # Save reference audio
            ref_filename = os.path.join(self.working_dir, "reference_voice.wav")
            sf.write(ref_filename, audio_data, SAMPLE_RATE)
            
            # Store reference voice
            self.reference_voice = ref_filename
            
            return "Reference voice processed successfully"
        
        except Exception as e:
            print(f"Reference audio processing error: {e}")
            import traceback
            traceback.print_exc()
            return f"Error processing reference audio: {str(e)}"
    
    def _generate_bark_speech(self, text, voice_preset=None):
        """Generate speech using Bark"""
        # Default Bark voice presets
        voice_presets = [
            "v2/en_speaker_6",  # Female
            "v2/en_speaker_3",  # Male
            "v2/en_speaker_9",  # Neutral
        ]
        
        # Prepare history prompt
        history_prompt = None
        
        # Check if a reference voice is available
        if self.reference_voice is not None:
            # Use saved reference voice file
            history_prompt = self.reference_voice
        elif voice_preset:
            # Use predefined voice preset
            history_prompt = voice_presets[0] if "v2/en_speaker" not in voice_preset else voice_preset
        
        # Generate audio with or without history prompt
        try:
            if history_prompt:
                audio_array = generate_audio(
                    text, 
                    history_prompt=history_prompt
                )
            else:
                # Fallback to default generation
                audio_array = generate_audio(text)
            
            # Save generated audio
            filename = f"bark_speech_{int(time.time())}.wav"
            filepath = os.path.join(self.working_dir, filename)
            wavfile.write(filepath, SAMPLE_RATE, audio_array)
            
            return filepath, None
        
        except Exception as e:
            print(f"Bark speech generation error: {e}")
            import traceback
            traceback.print_exc()
            return None, f"Error in Bark speech generation: {str(e)}"
    
    def generate_speech(self, text, model_name=None, voice_preset=None):
        """Generate speech using selected model"""
        if not text or not text.strip():
            return None, "Please enter some text to speak"
        
        # Use specified model or current model
        current_model = model_name or self.current_model
        
        try:
            if current_model == "bark":
                return self._generate_bark_speech(text, voice_preset)
            elif current_model == "speecht5":
                return self._generate_speecht5_speech(text, voice_preset)
            else:
                raise ValueError(f"Unsupported model: {current_model}")
        
        except Exception as e:
            print(f"Speech generation error: {e}")
            import traceback
            traceback.print_exc()
            return None, f"Error generating speech: {str(e)}"
    
    def _generate_speecht5_speech(self, text, speaker_id=None):
        """Generate speech using SpeechT5"""
        # Ensure model is initialized
        speecht5_models = self.models["speecht5"]()
        if not speecht5_models:
            return None, "SpeechT5 model not loaded"
        
        model = speecht5_models["model"]
        processor = speecht5_models["processor"]
        vocoder = speecht5_models["vocoder"]
        speaker_embeddings = speecht5_models["speaker_embeddings"]
        
        # Prepare inputs
        inputs = processor(text=text, return_tensors="pt")
        
        # Generate speech
        speech = model.generate_speech(
            inputs["input_ids"], 
            speaker_embeddings
        )
        
        # Convert to numpy array
        audio_array = speech.numpy()
        
        # Save generated audio
        filename = f"speecht5_speech_{int(time.time())}.wav"
        filepath = os.path.join(self.working_dir, filename)
        wavfile.write(filepath, 16000, audio_array)
        
        return filepath, None

# Rest of the code remains the same...