RohitBh commited on
Commit
ba3c54c
1 Parent(s): 8e3698d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +111 -0
app.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
4
+ from textblob import TextBlob
5
+ from transformers import pipeline
6
+ import matplotlib.pyplot as plt
7
+ import os
8
+ from wordcloud import WordCloud
9
+
10
+ # Function to analyze sentiment using the custom Hugging Face pipeline
11
+ def analyze_sentiment_hf(text):
12
+ hf_pipeline = pipeline("sentiment-analysis", "RohitBh/Sentimental_Analysis")
13
+ if len(text) > 512:
14
+ text = text[:511]
15
+ sentiment_result = hf_pipeline(text)
16
+ sentiment_label = sentiment_result[0]["label"]
17
+ if sentiment_label == "LABEL_1":
18
+ return "Positive"
19
+ elif sentiment_label == "LABEL_0":
20
+ return "Negative"
21
+ else:
22
+ return "Neutral"
23
+
24
+ # Function to analyze sentiment using VADER
25
+ def analyze_sentiment_vader(text):
26
+ sentiment_analyzer = SentimentIntensityAnalyzer()
27
+ sentiment_score = sentiment_analyzer.polarity_scores(text)["compound"]
28
+ if sentiment_score > 0:
29
+ return "Positive"
30
+ elif sentiment_score == 0:
31
+ return "Neutral"
32
+ else:
33
+ return "Negative"
34
+
35
+ # Function to analyze sentiment using TextBlob
36
+ def analyze_sentiment_textblob(text):
37
+ sentiment_analysis = TextBlob(text)
38
+ score = sentiment_analysis.sentiment.polarity
39
+ if score > 0:
40
+ return "Positive"
41
+ elif score == 0:
42
+ return "Neutral"
43
+ else:
44
+ return "Negative"
45
+
46
+ # Function to display DataFrame with sentiment
47
+ def display_results_dataframe(data_frame):
48
+ st.write(data_frame)
49
+
50
+ # Function to display a pie chart of sentiment distribution
51
+ def create_pie_chart(data_frame, sentiment_column):
52
+ sentiment_distribution = data_frame[sentiment_column].value_counts()
53
+ fig, ax = plt.subplots()
54
+ ax.pie(sentiment_distribution, labels=sentiment_distribution.index, autopct='%1.1f%%', startangle=90)
55
+ ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
56
+ st.pyplot(fig)
57
+
58
+ # Function to display word cloud based on sentiment data
59
+ def create_word_cloud(sentiment_data):
60
+ wordcloud_generator = WordCloud(width=800, height=400).generate(sentiment_data)
61
+ fig, ax = plt.subplots(figsize=(10, 5))
62
+ ax.imshow(wordcloud_generator, interpolation='bilinear')
63
+ ax.axis('off')
64
+ st.pyplot(fig)
65
+
66
+ # Main UI setup
67
+ st.set_page_config(page_title="Sentiment Analysis Tool", page_icon=":bar_chart:")
68
+ st.title("Sentiment Analysis Tool")
69
+
70
+ # Sidebar configuration for user input options
71
+ st.sidebar.title("Analysis Options")
72
+ input_type = st.sidebar.selectbox("Choose Input Type", ["Text Input", "CSV Upload"])
73
+ model_choice = st.sidebar.selectbox("Choose Sentiment Analysis Model", ["Hugging Face", "VADER", "TextBlob"])
74
+ display_type = st.sidebar.selectbox("Choose Display Type", ["DataFrame", "Pie Chart", "Word Cloud"])
75
+
76
+ # Process input based on user choice
77
+ if input_type == "Text Input":
78
+ user_text = st.text_input("Enter text for sentiment analysis:")
79
+ if st.button("Analyze Sentiment"):
80
+ if user_text:
81
+ # Analyzing sentiment based on selected model
82
+ if model_choice == "Hugging Face":
83
+ sentiment = analyze_sentiment_hf(user_text)
84
+ elif model_choice == "VADER":
85
+ sentiment = analyze_sentiment_vader(user_text)
86
+ else:
87
+ sentiment = analyze_sentiment_textblob(user_text)
88
+
89
+ st.write("Detected Sentiment:", sentiment)
90
+ else:
91
+ st.warning("Please enter some text to analyze.")
92
+ elif input_type == "CSV Upload":
93
+ uploaded_file = st.file_uploader("Upload CSV file for analysis", type="csv")
94
+ if st.button("Start Analysis"):
95
+ if uploaded_file is not None:
96
+ data_frame = pd.read_csv(uploaded_file)
97
+ # Assuming the CSV has a column named 'text' for analysis
98
+ if 'text' in data_frame.columns:
99
+ data_frame['Sentiment'] = data_frame['text'].apply(lambda x: analyze_sentiment_hf(x) if model_choice == "Hugging Face" else (analyze_sentiment_vader(x) if model_choice == "VADER" else analyze_sentiment_textblob(x)))
100
+
101
+ if display_type == "DataFrame":
102
+ display_results_dataframe(data_frame)
103
+ elif display_type == "Pie Chart":
104
+ create_pie_chart(data_frame, 'Sentiment')
105
+ elif display_type == "Word Cloud":
106
+ combined_text = ' '.join(data_frame['text'])
107
+ create_word_cloud(combined_text)
108
+ else:
109
+ st.error("The uploaded CSV file must contain a 'text' column.")
110
+ else:
111
+ st.warning("Please upload a CSV file to proceed with analysis.")