File size: 5,459 Bytes
9f28a6a
 
 
 
 
 
 
 
 
96f1aac
 
9f28a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb9f2e1
9f28a6a
50dba29
 
 
 
 
 
 
9f28a6a
 
 
 
50dba29
 
9f28a6a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import cv2
import numpy as np
import tensorflow as tf
import tensorflow_addons

from facenet_pytorch import MTCNN
from PIL import Image
import moviepy.editor as mp
import os
import zipfile

local_zip = "FINAL-EFFICIENTNETV2-B0.zip"
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('FINAL-EFFICIENTNETV2-B0')
zip_ref.close()

# Load face detector
mtcnn = MTCNN(margin=14, keep_all=True, factor=0.7, device='cpu')

class DetectionPipeline:
    """Pipeline class for detecting faces in the frames of a video file."""

    def __init__(self, detector, n_frames=None, batch_size=60, resize=None):
        """Constructor for DetectionPipeline class.

        Keyword Arguments:
            n_frames {int} -- Total number of frames to load. These will be evenly spaced
                throughout the video. If not specified (i.e., None), all frames will be loaded.
                (default: {None})
            batch_size {int} -- Batch size to use with MTCNN face detector. (default: {32})
            resize {float} -- Fraction by which to resize frames from original prior to face
                detection. A value less than 1 results in downsampling and a value greater than
                1 result in upsampling. (default: {None})
        """
        self.detector = detector
        self.n_frames = n_frames
        self.batch_size = batch_size
        self.resize = resize

    def __call__(self, filename):
        """Load frames from an MP4 video and detect faces.

        Arguments:
            filename {str} -- Path to video.
        """
        # Create video reader and find length
        v_cap = cv2.VideoCapture(filename)
        v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))

        # Pick 'n_frames' evenly spaced frames to sample
        if self.n_frames is None:
            sample = np.arange(0, v_len)
        else:
            sample = np.linspace(0, v_len - 1, self.n_frames).astype(int)

        # Loop through frames
        faces = []
        frames = []
        for j in range(v_len):
            success = v_cap.grab()
            if j in sample:
                # Load frame
                success, frame = v_cap.retrieve()
                if not success:
                    continue
                frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                # frame = Image.fromarray(frame)

                # Resize frame to desired size
                if self.resize is not None:
                    frame = frame.resize([int(d * self.resize) for d in frame.size])
                frames.append(frame)

                # When batch is full, detect faces and reset frame list
                if len(frames) % self.batch_size == 0 or j == sample[-1]:

                    boxes, probs = self.detector.detect(frames)

                    for i in range(len(frames)):

                        if boxes[i] is None:
                            faces.append(face2)     #append previous face frame if no face is detected
                            continue

                        box = boxes[i][0].astype(int)
                        frame = frames[i]
                        face = frame[box[1]:box[3], box[0]:box[2]]

                        if not face.any():
                            faces.append(face2)     #append previous face frame if no face is detected
                            continue

                        face2 = cv2.resize(face, (224, 224))

                        faces.append(face2)

                    frames = []

        v_cap.release()

        return faces


detection_pipeline = DetectionPipeline(detector=mtcnn,n_frames=20, batch_size=60)

model = tf.keras.models.load_model("FINAL-EFFICIENTNETV2-B0")


def deepfakespredict(input_video):

    faces = detection_pipeline(input_video)

    total = 0
    real = 0
    fake = 0

    for face in faces:

        face2 = face/255
        pred = model.predict(np.expand_dims(face2, axis=0))[0]
        total+=1

        pred2 = pred[1]

        if pred2 > 0.5:
          fake+=1
        else:
          real+=1

    fake_ratio = fake/total

    text =""
    text2 = "Deepfakes Confidence: " + str(fake_ratio)

    if fake_ratio >= 0.5:
        text = "The video is FAKE."
    else:
        text = "The video is REAL."

    face_frames = []

    for face in faces:
        face_frame = Image.fromarray(face.astype('uint8'), 'RGB')
        face_frames.append(face_frame)

    face_frames[0].save('results.gif', save_all=True, append_images=face_frames[1:], duration = 250, loop = 100 )
    clip = mp.VideoFileClip("results.gif")
    clip.write_videofile("myvideo.mp4")

    return text, text2, "myvideo.mp4"


title="EfficientNetV2 Deepfakes Video Detector"
description="This is a demo implementation of Deepfakes Video Detector by using EfficientNetV2 on frame-by-frame detection. The accuracy may not be accurate. To use it, simply upload your video, or click one of the examples to load them."

examples = [
                ['real-1.mp4'],
                ['fake-1.mp4'],
                ['Video1-fake-1-ff.mp4'],
                ['Video6-real-1-ff.mp4']
           ]
           
demo = gr.Interface(deepfakespredict,
                     inputs = ["video"],
                     outputs=["text","text", gr.outputs.Video(label="Detected face sequence")],
                     title=title,
                     description=description,
                     examples=examples
                     )
demo.launch()