File size: 9,199 Bytes
222619b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import glob
import importlib
import os
from resemblyzer import VoiceEncoder
import numpy as np
import torch
import torch.distributed as dist
from torch.utils.data import DistributedSampler
import utils
from tasks.base_task import BaseDataset
from utils.hparams import hparams
from utils.indexed_datasets import IndexedDataset
from tqdm import tqdm

class EndlessDistributedSampler(DistributedSampler):
    def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
        if num_replicas is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = dist.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
        self.shuffle = shuffle

        g = torch.Generator()
        g.manual_seed(self.epoch)
        if self.shuffle:
            indices = [i for _ in range(1000) for i in torch.randperm(
                len(self.dataset), generator=g).tolist()]
        else:
            indices = [i for _ in range(1000) for i in list(range(len(self.dataset)))]
        indices = indices[:len(indices) // self.num_replicas * self.num_replicas]
        indices = indices[self.rank::self.num_replicas]
        self.indices = indices

    def __iter__(self):
        return iter(self.indices)

    def __len__(self):
        return len(self.indices)


class VocoderDataset(BaseDataset):
    def __init__(self, prefix, shuffle=False):
        super().__init__(shuffle)
        self.hparams = hparams
        self.prefix = prefix
        self.data_dir = hparams['binary_data_dir']
        self.is_infer = prefix == 'test'
        self.batch_max_frames = 0 if self.is_infer else hparams['max_samples'] // hparams['hop_size']
        self.aux_context_window = hparams['aux_context_window']
        self.hop_size = hparams['hop_size']
        if self.is_infer and hparams['test_input_dir'] != '':
            self.indexed_ds, self.sizes = self.load_test_inputs(hparams['test_input_dir'])
            self.avail_idxs = [i for i, _ in enumerate(self.sizes)]
        elif self.is_infer and hparams['test_mel_dir'] != '':
            self.indexed_ds, self.sizes = self.load_mel_inputs(hparams['test_mel_dir'])
            self.avail_idxs = [i for i, _ in enumerate(self.sizes)]
        else:
            self.indexed_ds = None
            self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy')
            self.avail_idxs = [idx for idx, s in enumerate(self.sizes) if
                               s - 2 * self.aux_context_window > self.batch_max_frames]
            print(f"| {len(self.sizes) - len(self.avail_idxs)} short items are skipped in {prefix} set.")
            self.sizes = [s for idx, s in enumerate(self.sizes) if
                          s - 2 * self.aux_context_window > self.batch_max_frames]

    def _get_item(self, index):
        if self.indexed_ds is None:
            self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
        item = self.indexed_ds[index]
        return item

    def __getitem__(self, index):
        index = self.avail_idxs[index]
        item = self._get_item(index)
        sample = {
            "id": index,
            "item_name": item['item_name'],
            "mel": torch.FloatTensor(item['mel']),
            "wav": torch.FloatTensor(item['wav'].astype(np.float32)),
        }
        if 'pitch' in item:
            sample['pitch'] = torch.LongTensor(item['pitch'])
            sample['f0'] = torch.FloatTensor(item['f0'])

        if hparams.get('use_spk_embed', False):
            sample["spk_embed"] = torch.Tensor(item['spk_embed'])
        if hparams.get('use_emo_embed', False):
            sample["emo_embed"] = torch.Tensor(item['emo_embed'])

        return sample

    def collater(self, batch):
        if len(batch) == 0:
            return {}

        y_batch, c_batch, p_batch, f0_batch = [], [], [], []
        item_name = []
        have_pitch = 'pitch' in batch[0]
        for idx in range(len(batch)):
            item_name.append(batch[idx]['item_name'])
            x, c = batch[idx]['wav'] if self.hparams['use_wav'] else None, batch[idx]['mel'].squeeze(0)
            if have_pitch:
                p = batch[idx]['pitch']
                f0 = batch[idx]['f0']
            if self.hparams['use_wav']:self._assert_ready_for_upsampling(x, c, self.hop_size, 0) 
            if len(c) - 2 * self.aux_context_window > self.batch_max_frames:
                # randomly pickup with the batch_max_steps length of the part
                batch_max_frames = self.batch_max_frames if self.batch_max_frames != 0 else len(
                    c) - 2 * self.aux_context_window - 1
                batch_max_steps = batch_max_frames * self.hop_size
                interval_start = self.aux_context_window
                interval_end = len(c) - batch_max_frames - self.aux_context_window
                start_frame = np.random.randint(interval_start, interval_end)
                start_step = start_frame * self.hop_size
                if self.hparams['use_wav']:y = x[start_step: start_step + batch_max_steps]
                c = c[start_frame - self.aux_context_window:
                      start_frame + self.aux_context_window + batch_max_frames]
                if have_pitch:
                    p = p[start_frame - self.aux_context_window:
                          start_frame + self.aux_context_window + batch_max_frames]
                    f0 = f0[start_frame - self.aux_context_window:
                            start_frame + self.aux_context_window + batch_max_frames]
                if self.hparams['use_wav']:self._assert_ready_for_upsampling(y, c, self.hop_size, self.aux_context_window)
            else:
                print(f"Removed short sample from batch (length={len(x)}).")
                continue
            if self.hparams['use_wav']:y_batch += [y.reshape(-1, 1)]  # [(T, 1), (T, 1), ...]
            c_batch += [c]  # [(T' C), (T' C), ...]
            if have_pitch:
                p_batch += [p]  # [(T' C), (T' C), ...]
                f0_batch += [f0]  # [(T' C), (T' C), ...]

        # convert each batch to tensor, asuume that each item in batch has the same length
        if self.hparams['use_wav']:y_batch = utils.collate_2d(y_batch, 0).transpose(2, 1)  # (B, 1, T)
        c_batch = utils.collate_2d(c_batch, 0).transpose(2, 1)  # (B, C, T')
        if have_pitch:
            p_batch = utils.collate_1d(p_batch, 0)  # (B, T')
            f0_batch = utils.collate_1d(f0_batch, 0)  # (B, T')
        else:
            p_batch, f0_batch = None, None

        # make input noise signal batch tensor
        if self.hparams['use_wav']: z_batch = torch.randn(y_batch.size())  # (B, 1, T)
        else: z_batch=[]
        return {
            'z': z_batch,
            'mels': c_batch,
            'wavs': y_batch,
            'pitches': p_batch,
            'f0': f0_batch,
            'item_name': item_name
        }

    @staticmethod
    def _assert_ready_for_upsampling(x, c, hop_size, context_window):
        """Assert the audio and feature lengths are correctly adjusted for upsamping."""
        assert len(x) == (len(c) - 2 * context_window) * hop_size

    def load_test_inputs(self, test_input_dir, spk_id=0):
        inp_wav_paths = sorted(glob.glob(f'{test_input_dir}/*.wav') + glob.glob(f'{test_input_dir}/**/*.mp3'))
        sizes = []
        items = []

        binarizer_cls = hparams.get("binarizer_cls", 'data_gen.tts.base_binarizer.BaseBinarizer')
        pkg = ".".join(binarizer_cls.split(".")[:-1])
        cls_name = binarizer_cls.split(".")[-1]
        binarizer_cls = getattr(importlib.import_module(pkg), cls_name)
        binarization_args = hparams['binarization_args']

        for wav_fn in inp_wav_paths:
            item_name = wav_fn[len(test_input_dir) + 1:].replace("/", "_")
            item = binarizer_cls.process_item(
                item_name, wav_fn, binarization_args)
            items.append(item)
            sizes.append(item['len'])
        return items, sizes

    def load_mel_inputs(self, test_input_dir, spk_id=0):
        inp_mel_paths = sorted(glob.glob(f'{test_input_dir}/*.npy'))
        sizes = []
        items = []

        binarizer_cls = hparams.get("binarizer_cls", 'data_gen.tts.base_binarizer.BaseBinarizer')
        pkg = ".".join(binarizer_cls.split(".")[:-1])
        cls_name = binarizer_cls.split(".")[-1]
        binarizer_cls = getattr(importlib.import_module(pkg), cls_name)
        binarization_args = hparams['binarization_args']

        for mel in inp_mel_paths:
            mel_input = np.load(mel)
            mel_input = torch.FloatTensor(mel_input)
            item_name = mel[len(test_input_dir) + 1:].replace("/", "_")
            item = binarizer_cls.process_mel_item(item_name, mel_input, None, binarization_args)
            items.append(item)
            sizes.append(item['len'])
        return items, sizes