File size: 7,542 Bytes
3a5fce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from PIL import Image
import numpy as np
import cv2
import torchvision.transforms as transforms
import torch
import io
import os
import functools

class DataLoader():

	def __init__(self, opt, cv_img):
		super(DataLoader, self).__init__()

		self.dataset = Dataset()
		self.dataset.initialize(opt, cv_img)

		self.dataloader = torch.utils.data.DataLoader(
			self.dataset,
			batch_size=opt.batchSize,
			shuffle=not opt.serial_batches,
			num_workers=int(opt.nThreads))

	def load_data(self):
		return self.dataloader

	def __len__(self):
		return 1

class Dataset(torch.utils.data.Dataset):
	def __init__(self):
		super(Dataset, self).__init__()

	def initialize(self, opt, cv_img):
		self.opt = opt
		self.root = opt.dataroot

		self.A = Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))
		self.dataset_size = 1
	
	def __getitem__(self, index):        

		transform_A = get_transform(self.opt)
		A_tensor = transform_A(self.A.convert('RGB'))

		B_tensor = inst_tensor = feat_tensor = 0

		input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor, 
					  'feat': feat_tensor, 'path': ""}

		return input_dict

	def __len__(self):
		return 1    

class DeepModel(torch.nn.Module):

	def initialize(self, opt):

		torch.cuda.empty_cache()

		self.opt = opt

		self.gpu_ids = [] #FIX CPU

		self.netG = self.__define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, 
									  opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers, 
									  opt.n_blocks_local, opt.norm, self.gpu_ids)        

		# load networks
		self.__load_network(self.netG)

		
	
	def inference(self, label, inst):
		
		# Encode Inputs        
		input_label, inst_map, _, _ = self.__encode_input(label, inst, infer=True)

		# Fake Generation
		input_concat = input_label        
		
		with torch.no_grad():
			fake_image = self.netG.forward(input_concat)

		return fake_image
	
	# helper loading function that can be used by subclasses
	def __load_network(self, network):

		save_path = os.path.join(self.opt.checkpoints_dir)

		network.load_state_dict(torch.load(save_path))

	def __encode_input(self, label_map, inst_map=None, real_image=None, feat_map=None, infer=False):             
		if (len(self.gpu_ids) > 0): 
			input_label = label_map.data.cuda() #GPU
		else: 
			input_label = label_map.data #CPU
			
		return input_label, inst_map, real_image, feat_map

	def __weights_init(self, m):
		classname = m.__class__.__name__
		if classname.find('Conv') != -1:
			m.weight.data.normal_(0.0, 0.02)
		elif classname.find('BatchNorm2d') != -1:
			m.weight.data.normal_(1.0, 0.02)
			m.bias.data.fill_(0)

	def __define_G(self, input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1, 
				 n_blocks_local=3, norm='instance', gpu_ids=[]):    
		norm_layer = self.__get_norm_layer(norm_type=norm)         
		netG = GlobalGenerator(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer)
		
		if len(gpu_ids) > 0:
			netG.cuda(gpu_ids[0])
		netG.apply(self.__weights_init)
		return netG

	def __get_norm_layer(self, norm_type='instance'):
		norm_layer = functools.partial(torch.nn.InstanceNorm2d, affine=False)
		return norm_layer

##############################################################################
# Generator
##############################################################################
class GlobalGenerator(torch.nn.Module):
	def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=torch.nn.BatchNorm2d, 
				 padding_type='reflect'):
		assert(n_blocks >= 0)
		super(GlobalGenerator, self).__init__()        
		activation = torch.nn.ReLU(True)        

		model = [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation]
		### downsample
		for i in range(n_downsampling):
			mult = 2**i
			model += [torch.nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
					  norm_layer(ngf * mult * 2), activation]

		### resnet blocks
		mult = 2**n_downsampling
		for i in range(n_blocks):
			model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer)]
		
		### upsample         
		for i in range(n_downsampling):
			mult = 2**(n_downsampling - i)
			model += [torch.nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1),
					   norm_layer(int(ngf * mult / 2)), activation]
		model += [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), torch.nn.Tanh()]        
		self.model = torch.nn.Sequential(*model)
			
	def forward(self, input):
		return self.model(input)             
		
# Define a resnet block
class ResnetBlock(torch.nn.Module):
	def __init__(self, dim, padding_type, norm_layer, activation=torch.nn.ReLU(True), use_dropout=False):
		super(ResnetBlock, self).__init__()
		self.conv_block = self.__build_conv_block(dim, padding_type, norm_layer, activation, use_dropout)

	def __build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout):
		conv_block = []
		p = 0
		if padding_type == 'reflect':
			conv_block += [torch.nn.ReflectionPad2d(1)]
		elif padding_type == 'replicate':
			conv_block += [torch.nn.ReplicationPad2d(1)]
		elif padding_type == 'zero':
			p = 1
		else:
			raise NotImplementedError('padding [%s] is not implemented' % padding_type)

		conv_block += [torch.nn.Conv2d(dim, dim, kernel_size=3, padding=p),
					   norm_layer(dim),
					   activation]
		if use_dropout:
			conv_block += [torch.nn.Dropout(0.5)]

		p = 0
		if padding_type == 'reflect':
			conv_block += [torch.nn.ReflectionPad2d(1)]
		elif padding_type == 'replicate':
			conv_block += [torch.nn.ReplicationPad2d(1)]
		elif padding_type == 'zero':
			p = 1
		else:
			raise NotImplementedError('padding [%s] is not implemented' % padding_type)
		conv_block += [torch.nn.Conv2d(dim, dim, kernel_size=3, padding=p),
					   norm_layer(dim)]

		return torch.nn.Sequential(*conv_block)

	def forward(self, x):
		out = x + self.conv_block(x)
		return out

# Data utils:
def get_transform(opt, method=Image.BICUBIC, normalize=True):
	transform_list = []

	base = float(2 ** opt.n_downsample_global)
	if opt.netG == 'local':
		base *= (2 ** opt.n_local_enhancers)
	transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method)))

	transform_list += [transforms.ToTensor()]

	if normalize:
		transform_list += [transforms.Normalize((0.5, 0.5, 0.5),
												(0.5, 0.5, 0.5))]
	return transforms.Compose(transform_list)

def __make_power_2(img, base, method=Image.BICUBIC):
	ow, oh = img.size        
	h = int(round(oh / base) * base)
	w = int(round(ow / base) * base)
	if (h == oh) and (w == ow):
		return img
	return img.resize((w, h), method)

# Converts a Tensor into a Numpy array
# |imtype|: the desired type of the converted numpy array
def tensor2im(image_tensor, imtype=np.uint8, normalize=True):
	if isinstance(image_tensor, list):
		image_numpy = []
		for i in range(len(image_tensor)):
			image_numpy.append(tensor2im(image_tensor[i], imtype, normalize))
		return image_numpy
	image_numpy = image_tensor.cpu().float().numpy()
	if normalize:
		image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
	else:
		image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0      
	image_numpy = np.clip(image_numpy, 0, 255)
	if image_numpy.shape[2] == 1 or image_numpy.shape[2] > 3:        
		image_numpy = image_numpy[:,:,0]
	return image_numpy.astype(imtype)