nsfwalex commited on
Commit
60efdc5
β€’
1 Parent(s): 71be84f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -20
app.py CHANGED
@@ -1,16 +1,17 @@
 
1
  import time
 
 
 
2
  import cv2
3
- import numpy as np
4
- import gradio as gr
5
  from PIL import Image
 
 
6
 
 
7
  index = 1
8
 
9
- def process(dress):
10
- # Dummy processing function for demonstration
11
- # Replace with your actual processing logic
12
- return cv2.GaussianBlur(dress, (15, 15), 0)
13
-
14
  def mainTest(inputpath, outpath):
15
  watermark = deep_nude_process(inputpath)
16
  watermark1 = cv2.cvtColor(watermark, cv2.COLOR_BGRA2RGBA)
@@ -27,17 +28,16 @@ def deep_nude_process(inputpath):
27
 
28
  def inference(img):
29
  global index
30
- img = np.array(img) # Convert PIL image to NumPy array
31
  bgra = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
32
- inputpath = f"input_{index}.jpg"
33
  cv2.imwrite(inputpath, bgra)
34
 
35
- outputpath = f"out_{index}.jpg"
36
  index += 1
37
  print(time.strftime("START!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
38
  output = mainTest(inputpath, outputpath)
39
  print(time.strftime("Finish!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
40
- return Image.fromarray(output)
41
 
42
  title = "Undress AI"
43
  description = "β›” Input photos of people, similar to the test picture at the bottom, and undress pictures will be produced. You may have to wait 30 seconds for a picture. πŸ”ž Do not upload personal photos πŸ”ž There is a queue system. According to the logic of first come, first served, only one picture will be made at a time. Must be able to at least see the outline of a human body β›”"
@@ -47,15 +47,16 @@ examples = [
47
  ['input.jpg', 'Test'],
48
  ]
49
 
50
- web = gr.Interface(
51
- fn=inference,
52
- inputs=gr.Image(type="pil", label="Input Image"),
53
- outputs=gr.Image(type="pil", label="Processed Image"),
54
- title=title,
55
- description=description,
56
- examples=examples,
57
- allow_flagging="never"
58
- )
 
59
 
60
  if __name__ == '__main__':
61
  web.launch()
 
1
+ from run import process
2
  import time
3
+ import subprocess
4
+ import os
5
+ import argparse
6
  import cv2
7
+ import sys
 
8
  from PIL import Image
9
+ import torch
10
+ import gradio as gr
11
 
12
+ TESTdevice = "cpu"
13
  index = 1
14
 
 
 
 
 
 
15
  def mainTest(inputpath, outpath):
16
  watermark = deep_nude_process(inputpath)
17
  watermark1 = cv2.cvtColor(watermark, cv2.COLOR_BGRA2RGBA)
 
28
 
29
  def inference(img):
30
  global index
 
31
  bgra = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
32
+ inputpath = "input_" + str(index) + ".jpg"
33
  cv2.imwrite(inputpath, bgra)
34
 
35
+ outputpath = "out_" + str(index) + ".jpg"
36
  index += 1
37
  print(time.strftime("START!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
38
  output = mainTest(inputpath, outputpath)
39
  print(time.strftime("Finish!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
40
+ return output
41
 
42
  title = "Undress AI"
43
  description = "β›” Input photos of people, similar to the test picture at the bottom, and undress pictures will be produced. You may have to wait 30 seconds for a picture. πŸ”ž Do not upload personal photos πŸ”ž There is a queue system. According to the logic of first come, first served, only one picture will be made at a time. Must be able to at least see the outline of a human body β›”"
 
47
  ['input.jpg', 'Test'],
48
  ]
49
 
50
+ def update_image(img):
51
+ return gr.update(value=inference(img))
52
+
53
+ web = gr.Interface(fn=update_image,
54
+ inputs=gr.Image(type="numpy", label="Upload Image"),
55
+ outputs=gr.Image(type="numpy", label="Processed Image"),
56
+ title=title,
57
+ description=description,
58
+ examples=examples,
59
+ )
60
 
61
  if __name__ == '__main__':
62
  web.launch()