nsfwalex commited on
Commit
d948530
Β·
verified Β·
1 Parent(s): 1cba3b3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -38
app.py CHANGED
@@ -1,13 +1,7 @@
1
- from run import process
2
- import time
3
- import subprocess
4
- import os
5
- import argparse
6
- import cv2
7
- import sys
8
- from PIL import Image
9
- import torch
10
  import gradio as gr
 
 
 
11
 
12
  TESTdevice = "cpu"
13
  index = 1
@@ -39,39 +33,46 @@ def inference(img):
39
  print(time.strftime("Finish!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
40
  return output
41
 
42
- title = "Undress AI"
43
- description = "β›” Input photos of people, similar to the test picture at the bottom, and undress pictures will be produced. You may have to wait 30 seconds for a picture. πŸ”ž Do not upload personal photos πŸ”ž There is a queue system. According to the logic of first come, first served, only one picture will be made at a time. Must be able to at least see the outline of a human body β›”"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
- examples = [
46
- ['input.png', 'Test'],
47
- ['input.jpg', 'Test'],
48
- ]
 
49
 
50
- css = """
51
- body {
52
- background-color: rgb(17, 24, 39);
53
- color: white;
54
- overflow: hidden; /* Prevent scrolling */
55
- }
56
- .gradio-container {
57
- background-color: rgb(17, 24, 39) !important;
58
- border: none !important;
59
- max-width: 100%; /* Ensure it does not exceed the container's width */
60
- max-height: 100%; /* Ensure it does not exceed the container's height */
61
- overflow: hidden; /* Prevent internal scrolling */
62
- }
63
- footer {display: none !important;} /* Hide footer */
64
- """
65
 
66
- with gr.Blocks(css=css) as demo:
67
- with gr.Column():
68
- image_input = gr.Image(type="numpy", label="Upload Image", height=512, width=512)
69
- process_button = gr.Button("Process Image")
70
- status = gr.Markdown(value="")
71
 
72
- def update_status(img):
73
- return inference(img), gr.update(value="Processing complete!")
74
 
75
- process_button.click(update_status, inputs=image_input, outputs=[image_input, status])
76
 
77
  demo.launch()
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import cv2
3
+ import time
4
+ from urllib.parse import parse_qs, urlparse
5
 
6
  TESTdevice = "cpu"
7
  index = 1
 
33
  print(time.strftime("Finish!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
34
  return output
35
 
36
+ def get_css(bg_color, width, height):
37
+ return f"""
38
+ body {{
39
+ background-color: {bg_color};
40
+ color: white;
41
+ overflow: hidden; /* Prevent scrolling */
42
+ }}
43
+ .gradio-container {{
44
+ background-color: {bg_color} !important;
45
+ border: none !important;
46
+ width: {width} !important; /* Set the width */
47
+ height: {height} !important; /* Set the height */
48
+ max-width: 100%; /* Ensure it does not exceed the container's width */
49
+ max-height: 100%; /* Ensure it does not exceed the container's height */
50
+ overflow: scroll; /* Prevent internal scrolling */
51
+ }}
52
+ footer {{display: none !important;}} /* Hide footer */
53
+ """
54
+
55
+ def update_status(img):
56
+ return inference(img), gr.update(value="Processing complete!")
57
 
58
+ def create_interface(request):
59
+ query_params = parse_qs(urlparse(request.url).query)
60
+ bg_color = query_params.get('bg_color', ['rgb(17, 24, 39)'])[0]
61
+ width = int(query_params.get('width', ['auto'])[0])
62
+ height = int(query_params.get('height', ['100%'])[0])
63
 
64
+ css = get_css(bg_color, width, height)
65
+
66
+ with gr.Blocks(css=css) as demo:
67
+ with gr.Column():
68
+ image_input = gr.Image(type="numpy", label="Upload Image", height=height, width=width)
69
+ process_button = gr.Button("Process Image")
70
+ status = gr.Markdown(value="")
 
 
 
 
 
 
 
 
71
 
72
+ process_button.click(update_status, inputs=image_input, outputs=[image_input, status])
 
 
 
 
73
 
74
+ return demo
 
75
 
76
+ demo = gr.Interface(create_interface, inputs=[], outputs=[])
77
 
78
  demo.launch()