import gradio as gr import cv2 import time from urllib.parse import parse_qs, urlparse TESTdevice = "cpu" index = 1 def mainTest(inputpath, outpath): watermark = deep_nude_process(inputpath) watermark1 = cv2.cvtColor(watermark, cv2.COLOR_BGRA2RGBA) return watermark1 def deep_nude_process(inputpath): dress = cv2.imread(inputpath) h = dress.shape[0] w = dress.shape[1] dress = cv2.resize(dress, (512, 512), interpolation=cv2.INTER_CUBIC) watermark = process(dress) watermark = cv2.resize(watermark, (w, h), interpolation=cv2.INTER_CUBIC) return watermark def inference(img): global index bgra = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA) inputpath = f"input_{index}.jpg" cv2.imwrite(inputpath, bgra) outputpath = f"out_{index}.jpg" index += 1 print(time.strftime("START!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime())) output = mainTest(inputpath, outputpath) print(time.strftime("Finish!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime())) return output def get_css(bg_color, width, height): return f""" body {{ background-color: {bg_color}; color: white; overflow: hidden; /* Prevent scrolling */ }} .gradio-container {{ background-color: {bg_color} !important; border: none !important; width: {width} !important; /* Set the width */ height: {height} !important; /* Set the height */ max-width: 100%; /* Ensure it does not exceed the container's width */ max-height: 100%; /* Ensure it does not exceed the container's height */ overflow: scroll; /* Prevent internal scrolling */ }} footer {{display: none !important;}} /* Hide footer */ """ def update_status(img): return inference(img), gr.update(value="Processing complete!") def create_interface(request): query_params = parse_qs(urlparse(request.url).query) bg_color = query_params.get('bg_color', ['rgb(17, 24, 39)'])[0] width = int(query_params.get('width', ['auto'])[0]) height = int(query_params.get('height', ['100%'])[0]) css = get_css(bg_color, width, height) with gr.Blocks(css=css) as demo: with gr.Column(): image_input = gr.Image(type="numpy", label="Upload Image", height=height, width=width) process_button = gr.Button("Process Image") status = gr.Markdown(value="") process_button.click(update_status, inputs=image_input, outputs=[image_input, status]) return demo demo = gr.Interface(create_interface, inputs=[], outputs=[]) demo.launch()