import gradio as gr import numpy as np import random import spaces import torch from diffusers import DiffusionPipeline device = "cuda" if torch.cuda.is_available() else "cpu" # Load the model in FP16 pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.float16) # Move the pipeline to GPU if available pipe = pipe.to(device) # Convert text encoders to full precision pipe.text_encoder = pipe.text_encoder.to(torch.float32) if hasattr(pipe, 'text_encoder_2'): pipe.text_encoder_2 = pipe.text_encoder_2.to(torch.float32) # Enable memory efficient attention if available and on CUDA if device == "cuda" and hasattr(pipe, 'enable_xformers_memory_efficient_attention'): try: pipe.enable_xformers_memory_efficient_attention() print("xformers memory efficient attention enabled") except Exception as e: print(f"Could not enable memory efficient attention: {e}") # Compile the UNet for potential speedups if on CUDA if device == "cuda": try: pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) print("UNet compiled for potential speedups") except Exception as e: print(f"Could not compile UNet: {e}") MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 @spaces.GPU() def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) # Use full precision for text encoding with torch.no_grad(): text_inputs = pipe.tokenizer(prompt, return_tensors="pt").to(device) text_embeddings = pipe.text_encoder(text_inputs.input_ids)[0] # Use mixed precision for the rest of the pipeline with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16): image = pipe( prompt_embeds=text_embeddings, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0 ).images[0] return image, seed examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css = """ #col-container { margin: 0 auto; max-width: 720px; } .container { margin: 0 auto; padding: 20px; border-radius: 10px; background-color: #f0f0f0; } .title { text-align: center; color: #2c3e50; margin-bottom: 20px; } .subtitle { text-align: center; color: #34495e; margin-bottom: 30px; } .speed-info { background-color: #e74c3c; color: white; padding: 10px; border-radius: 5px; text-align: center; margin-bottom: 20px; } .prompt-container { display: flex; gap: 10px; margin-bottom: 20px; } .advanced-settings { background-color: #ecf0f1; padding: 15px; border-radius: 5px; margin-top: 20px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML( """