Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from io import BytesIO
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
from processing_llava import LlavaProcessor, OpenCLIPImageProcessor
|
7 |
+
from modeling_llava import LlavaForConditionalGeneration
|
8 |
+
from transformers import AutoTokenizer, TextStreamer
|
9 |
+
|
10 |
+
# Скачиваем необходимые файлы модели
|
11 |
+
hf_hub_download(repo_id="OEvortex/HelpingAI-Vision", filename="configuration_llava.py", local_dir="./", force_download=True)
|
12 |
+
hf_hub_download(repo_id="OEvortex/HelpingAI-Vision", filename="configuration_phi.py", local_dir="./", force_download=True)
|
13 |
+
hf_hub_download(repo_id="OEvortex/HelpingAI-Vision", filename="modeling_llava.py", local_dir="./", force_download=True)
|
14 |
+
hf_hub_download(repo_id="OEvortex/HelpingAI-Vision", filename="modeling_phi.py", local_dir="./", force_download=True)
|
15 |
+
hf_hub_download(repo_id="OEvortex/HelpingAI-Vision", filename="processing_llava.py", local_dir="./", force_download=True)
|
16 |
+
|
17 |
+
# Создаем модель
|
18 |
+
model = LlavaForConditionalGeneration.from_pretrained("OEvortex/HelpingAI-Vision", torch_dtype=torch.float16)
|
19 |
+
model = model.to("cuda")
|
20 |
+
|
21 |
+
# Создаем процессоры
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("OEvortex/HelpingAI-Vision")
|
23 |
+
image_processor = OpenCLIPImageProcessor(model.config.preprocess_config)
|
24 |
+
processor = LlavaProcessor(image_processor, tokenizer)
|
25 |
+
|
26 |
+
# Функция для генерации текста
|
27 |
+
def generate_text(image, initial_text):
|
28 |
+
# Обрабатываем входные данные
|
29 |
+
with torch.inference_mode():
|
30 |
+
inputs = processor(initial_text, image, model, return_tensors='pt')
|
31 |
+
inputs['input_ids'] = inputs['input_ids'].to(model.device)
|
32 |
+
inputs['attention_mask'] = inputs['attention_mask'].to(model.device)
|
33 |
+
|
34 |
+
streamer = TextStreamer(tokenizer)
|
35 |
+
|
36 |
+
# Генерируем данные
|
37 |
+
output = model.generate(**inputs, max_new_tokens=200, do_sample=True, top_p=0.9, temperature=1.2, eos_token_id=tokenizer.eos_token_id, streamer=streamer)
|
38 |
+
|
39 |
+
# Возвращаем сгенерированный текст, убирая начальный и конечный токены
|
40 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
41 |
+
|
42 |
+
# Создаем интерфейс Gradio
|
43 |
+
with gr.Blocks() as demo:
|
44 |
+
with gr.Row():
|
45 |
+
with gr.Column():
|
46 |
+
image_input = gr.Image(type="pil", label="Загрузите изображение")
|
47 |
+
text_input = gr.Textbox(label="Введите текст запроса")
|
48 |
+
with gr.Column():
|
49 |
+
output_text = gr.Textbox(label="Сгенерированный текст")
|
50 |
+
|
51 |
+
generate_button = gr.Button("Генерировать текст")
|
52 |
+
generate_button.click(generate_text, inputs=[image_input, text_input], outputs=output_text)
|
53 |
+
|
54 |
+
# Запускаем интерфейс
|
55 |
+
demo.launch()
|