Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
from dataclasses import dataclass, field
|
5 |
-
import numpy as np
|
6 |
from typing import Dict, Tuple, Any
|
7 |
|
8 |
# 📥 讀取 Google 試算表函數
|
@@ -43,6 +42,22 @@ class SurveyAnalyzer:
|
|
43 |
'6.對於示範場域的服務感到滿意'
|
44 |
]
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
def plot_satisfaction_correlation(self, df: pd.DataFrame):
|
47 |
"""🔥 滿意度相關性熱力圖"""
|
48 |
correlation_matrix = df[self.satisfaction_columns].corr()
|
@@ -60,21 +75,13 @@ class SurveyAnalyzer:
|
|
60 |
|
61 |
st.plotly_chart(fig, use_container_width=True)
|
62 |
|
63 |
-
def
|
64 |
-
"""
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
'平均年齡': f"{pd.to_numeric(df['2.出生年(民國__年)'], errors='coerce').mean():.1f}歲"
|
71 |
-
},
|
72 |
-
'滿意度統計': {
|
73 |
-
'整體平均滿意度': f"{df['6.對於示範場域的服務感到滿意'].mean():.2f}",
|
74 |
-
'最高分項目': df[self.satisfaction_columns].mean().idxmax(),
|
75 |
-
'最低分項目': df[self.satisfaction_columns].mean().idxmin()
|
76 |
-
}
|
77 |
-
}
|
78 |
|
79 |
# 🎨 Streamlit UI
|
80 |
def main():
|
@@ -90,16 +97,25 @@ def main():
|
|
90 |
analyzer = SurveyAnalyzer()
|
91 |
|
92 |
# 📌 基本統計數據
|
93 |
-
st.header("
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
if __name__ == "__main__":
|
105 |
main()
|
|
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
from dataclasses import dataclass, field
|
|
|
5 |
from typing import Dict, Tuple, Any
|
6 |
|
7 |
# 📥 讀取 Google 試算表函數
|
|
|
42 |
'6.對於示範場域的服務感到滿意'
|
43 |
]
|
44 |
|
45 |
+
def generate_report(self, df: pd.DataFrame) -> Dict[str, Any]:
|
46 |
+
"""📝 生成問卷調查報告"""
|
47 |
+
return {
|
48 |
+
'基本統計': {
|
49 |
+
'總受訪人數': len(df),
|
50 |
+
'性別分布': df['1. 性別'].value_counts().to_dict(),
|
51 |
+
'教育程度分布': df['3.教育程度'].value_counts().to_dict(),
|
52 |
+
'平均年齡': f"{pd.to_numeric(df['2.出生年(民國__年)'], errors='coerce').mean():.1f}歲"
|
53 |
+
},
|
54 |
+
'滿意度統計': {
|
55 |
+
'整體平均滿意度': f"{df['6.對於示範場域的服務感到滿意'].mean():.2f}",
|
56 |
+
'最高分項目': df[self.satisfaction_columns].mean().idxmax(),
|
57 |
+
'最低分項目': df[self.satisfaction_columns].mean().idxmin()
|
58 |
+
}
|
59 |
+
}
|
60 |
+
|
61 |
def plot_satisfaction_correlation(self, df: pd.DataFrame):
|
62 |
"""🔥 滿意度相關性熱力圖"""
|
63 |
correlation_matrix = df[self.satisfaction_columns].corr()
|
|
|
75 |
|
76 |
st.plotly_chart(fig, use_container_width=True)
|
77 |
|
78 |
+
def plot_gender_distribution(self, df: pd.DataFrame):
|
79 |
+
"""🟠 性別分佈圓餅圖"""
|
80 |
+
gender_counts = df['1. 性別'].value_counts().reset_index()
|
81 |
+
gender_counts.columns = ['性別', '人數']
|
82 |
+
fig = px.pie(gender_counts, names='性別', values='人數', title='🟠 受訪者性別分布',
|
83 |
+
color_discrete_sequence=px.colors.sequential.Sunset)
|
84 |
+
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
# 🎨 Streamlit UI
|
87 |
def main():
|
|
|
97 |
analyzer = SurveyAnalyzer()
|
98 |
|
99 |
# 📌 基本統計數據
|
100 |
+
st.sidebar.header("📌 選擇數據分析")
|
101 |
+
selected_analysis = st.sidebar.radio("選擇要查看的分析",
|
102 |
+
["📋 問卷統計報告", "🔥 滿意度相關性熱力圖", "🟠 性別分佈"])
|
103 |
+
|
104 |
+
if selected_analysis == "📋 問卷統計報告":
|
105 |
+
st.header("📋 問卷統計報告")
|
106 |
+
report = analyzer.generate_report(df)
|
107 |
+
for category, stats in report.items():
|
108 |
+
with st.expander(f"🔍 {category}"):
|
109 |
+
for key, value in stats.items():
|
110 |
+
st.write(f"**{key}**: {value}")
|
111 |
+
|
112 |
+
elif selected_analysis == "🔥 滿意度相關性熱力圖":
|
113 |
+
st.header("🔥 滿意度相關性熱力圖")
|
114 |
+
analyzer.plot_satisfaction_correlation(df)
|
115 |
+
|
116 |
+
elif selected_analysis == "🟠 性別分佈":
|
117 |
+
st.header("🟠 性別分佈")
|
118 |
+
analyzer.plot_gender_distribution(df)
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
main()
|