Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,168 +1,159 @@
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
|
|
|
|
2 |
import plotly.express as px
|
3 |
import plotly.graph_objects as go
|
4 |
-
import numpy as np
|
5 |
from plotly.subplots import make_subplots
|
6 |
-
import streamlit as st
|
7 |
|
8 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
@st.cache_data
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
df =
|
|
|
|
|
|
|
29 |
|
30 |
-
def
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
fig = px.scatter(
|
33 |
df,
|
34 |
x='價格',
|
35 |
y='評分',
|
36 |
text='飯店名稱',
|
37 |
-
size='價格',
|
38 |
-
color='評分',
|
39 |
title='台南飯店價��與評分關係圖',
|
40 |
labels={'價格': '房價 (TWD)', '評分': '評分 (0-10)'}
|
41 |
)
|
42 |
-
|
43 |
-
fig.update_traces(
|
44 |
-
textposition='top center',
|
45 |
-
marker=dict(sizeref=2.*max(df['價格'])/(40.**2))
|
46 |
-
)
|
47 |
-
|
48 |
-
fig.update_layout(
|
49 |
-
height=600,
|
50 |
-
showlegend=True,
|
51 |
-
title_x=0.5,
|
52 |
-
title_font_size=20
|
53 |
-
)
|
54 |
-
|
55 |
return fig
|
56 |
|
57 |
-
def create_price_distribution():
|
58 |
-
"""價格分布圖"""
|
59 |
fig = go.Figure()
|
60 |
-
|
61 |
-
# 添加直方圖
|
62 |
fig.add_trace(go.Histogram(
|
63 |
x=df['價格'],
|
64 |
name='價格分布',
|
65 |
nbinsx=10,
|
66 |
marker_color='rgb(55, 83, 109)'
|
67 |
))
|
68 |
-
|
69 |
-
# 添加箱型圖
|
70 |
fig.add_trace(go.Box(
|
71 |
x=df['價格'],
|
72 |
name='價格箱型圖',
|
73 |
marker_color='rgb(26, 118, 255)'
|
74 |
))
|
75 |
-
|
76 |
-
fig.update_layout(
|
77 |
-
title_text='台南飯店價格分布',
|
78 |
-
title_x=0.5,
|
79 |
-
title_font_size=20,
|
80 |
-
xaxis_title='價格 (TWD)',
|
81 |
-
yaxis_title='數量',
|
82 |
-
height=500,
|
83 |
-
bargap=0.2,
|
84 |
-
showlegend=True
|
85 |
-
)
|
86 |
-
|
87 |
return fig
|
88 |
|
89 |
-
def
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
color='價格區間'
|
98 |
-
)
|
99 |
-
|
100 |
-
fig.update_layout(
|
101 |
-
title_x=0.5,
|
102 |
-
title_font_size=20,
|
103 |
-
height=500,
|
104 |
-
showlegend=False
|
105 |
-
)
|
106 |
-
|
107 |
-
return fig
|
108 |
|
109 |
-
|
110 |
-
""
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
x=df_sorted['飯店名稱'],
|
120 |
-
y=df_sorted['評分'],
|
121 |
-
name="評分",
|
122 |
-
marker_color='rgb(55, 83, 109)'
|
123 |
-
)
|
124 |
-
)
|
125 |
-
|
126 |
-
# 添加價格線圖
|
127 |
-
fig.add_trace(
|
128 |
-
go.Scatter(
|
129 |
-
x=df_sorted['飯店名稱'],
|
130 |
-
y=df_sorted['價格'],
|
131 |
-
name="價格",
|
132 |
-
marker_color='rgb(26, 118, 255)'
|
133 |
-
),
|
134 |
-
secondary_y=True
|
135 |
-
)
|
136 |
-
|
137 |
-
fig.update_layout(
|
138 |
-
title_text='台南飯店評分與價格比較',
|
139 |
-
title_x=0.5,
|
140 |
-
title_font_size=20,
|
141 |
-
height=700,
|
142 |
-
showlegend=True,
|
143 |
-
xaxis_tickangle=45
|
144 |
-
)
|
145 |
-
|
146 |
-
fig.update_yaxes(title_text="評分", secondary_y=False)
|
147 |
-
fig.update_yaxes(title_text="價格 (TWD)", secondary_y=True)
|
148 |
-
|
149 |
-
return fig
|
150 |
|
151 |
-
|
152 |
-
st.
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
st.plotly_chart(dist_fig, use_container_width=True)
|
162 |
-
st.plotly_chart(box_fig, use_container_width=True)
|
163 |
-
st.plotly_chart(comparison_fig, use_container_width=True)
|
164 |
-
|
165 |
-
st.write("分析完成!請查看上方產生的互動式視覺化圖表。")
|
166 |
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# file_path: app.py
|
2 |
+
import streamlit as st
|
3 |
+
import requests
|
4 |
+
from bs4 import BeautifulSoup
|
5 |
import pandas as pd
|
6 |
+
from google.oauth2.service_account import Credentials
|
7 |
+
import gspread
|
8 |
import plotly.express as px
|
9 |
import plotly.graph_objects as go
|
|
|
10 |
from plotly.subplots import make_subplots
|
|
|
11 |
|
12 |
+
# Google Sheets credentials
|
13 |
+
SCOPE = ['https://www.googleapis.com/auth/spreadsheets']
|
14 |
+
SERVICE_ACCOUNT_FILE = "realtime-441511-f5708eabdf26.json"
|
15 |
+
SPREADSHEET_URL = "https://docs.google.com/spreadsheets/d/1tIsXCbB8P6ZxdnZNnv7S7BBWbbT7lrSjW990zG-vQAA/edit?gid=0#gid=0"
|
16 |
+
|
17 |
+
# Streamlit app
|
18 |
+
st.title("Booking.com 台南飯店資料爬取與分析")
|
19 |
+
st.sidebar.header("功能選擇")
|
20 |
+
mode = st.sidebar.selectbox("選擇模式", ["資料爬取", "資料視覺化", "上傳至 Google Sheet"])
|
21 |
+
|
22 |
@st.cache_data
|
23 |
+
def scrape_booking_hotel():
|
24 |
+
url = "https://www.booking.com/searchresults.zh-tw.html"
|
25 |
+
headers = {
|
26 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
27 |
+
'Accept-Language': 'zh-TW,zh;q=0.9,en-US;q=0.8,en;q=0.7',
|
28 |
+
}
|
29 |
+
params = {
|
30 |
+
'ss': '台南',
|
31 |
+
'checkin': '2024-11-16',
|
32 |
+
'checkout': '2024-11-17',
|
33 |
+
'group_adults': '2',
|
34 |
+
'no_rooms': '1',
|
35 |
+
'group_children': '0',
|
36 |
+
'dest_id': '-2637868',
|
37 |
+
'dest_type': 'city'
|
38 |
+
}
|
39 |
+
try:
|
40 |
+
response = requests.get(url, headers=headers, params=params)
|
41 |
+
response.raise_for_status()
|
42 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
43 |
+
hotels_data = []
|
44 |
+
hotel_cards = soup.find_all('div', {'data-testid': 'property-card'})
|
45 |
+
|
46 |
+
for hotel in hotel_cards:
|
47 |
+
try:
|
48 |
+
name_elem = hotel.find('div', {'data-testid': 'title', 'class': 'f6431b446c'})
|
49 |
+
name = name_elem.text.strip() if name_elem else "無資料"
|
50 |
+
price_elem = hotel.find('span', {
|
51 |
+
'data-testid': 'price-and-discounted-price',
|
52 |
+
'class': 'f6431b446c'
|
53 |
+
})
|
54 |
+
price = price_elem.text.strip() if price_elem else "無資料"
|
55 |
+
price = price.replace('TWD', '').replace(' ', '').replace(',', '').strip()
|
56 |
+
rating_container = hotel.find('div', {'class': 'a3b8729ab1'})
|
57 |
+
rating_elem = rating_container.find('div', {'class': 'ac4a7896c7'}) if rating_container else None
|
58 |
+
rating = rating_elem.text.strip() if rating_elem else "無評分"
|
59 |
+
description_elem = hotel.find('div', {'data-testid': 'recommended-units'})
|
60 |
+
if description_elem:
|
61 |
+
room_type = description_elem.find('h4', {'class': 'abf093bdfe'})
|
62 |
+
room_type = room_type.text.strip() if room_type else ""
|
63 |
+
bed_info = description_elem.find('div', {'class': 'abf093bdfe'})
|
64 |
+
bed_info = bed_info.text.strip() if bed_info else ""
|
65 |
+
cancellation = description_elem.find('strong', text='可免費取消')
|
66 |
+
cancellation = "可免費取消" if cancellation else ""
|
67 |
+
payment = description_elem.find('strong', text='無需訂金')
|
68 |
+
payment = "無需訂金" if payment else ""
|
69 |
+
description = f"{room_type} | {bed_info} | {cancellation} | {payment}".strip(' |')
|
70 |
+
else:
|
71 |
+
description = "無說明"
|
72 |
+
hotels_data.append({
|
73 |
+
'飯店名稱': name,
|
74 |
+
'價格': price,
|
75 |
+
'評分': rating,
|
76 |
+
'說明': description
|
77 |
+
})
|
78 |
+
except AttributeError:
|
79 |
+
continue
|
80 |
|
81 |
+
df = pd.DataFrame(hotels_data).drop_duplicates()
|
82 |
+
return df
|
83 |
+
except requests.RequestException:
|
84 |
+
return pd.DataFrame()
|
85 |
|
86 |
+
def clean_rating(x):
|
87 |
+
if pd.isna(x) or x == '無評分':
|
88 |
+
return 0
|
89 |
+
return float(str(x).replace('分數', '').replace('分', ''))
|
90 |
+
|
91 |
+
def create_price_rating_scatter(df):
|
92 |
fig = px.scatter(
|
93 |
df,
|
94 |
x='價格',
|
95 |
y='評分',
|
96 |
text='飯店名稱',
|
97 |
+
size='價格',
|
98 |
+
color='評分',
|
99 |
title='台南飯店價��與評分關係圖',
|
100 |
labels={'價格': '房價 (TWD)', '評分': '評分 (0-10)'}
|
101 |
)
|
102 |
+
fig.update_layout(height=600, title_x=0.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
return fig
|
104 |
|
105 |
+
def create_price_distribution(df):
|
|
|
106 |
fig = go.Figure()
|
|
|
|
|
107 |
fig.add_trace(go.Histogram(
|
108 |
x=df['價格'],
|
109 |
name='價格分布',
|
110 |
nbinsx=10,
|
111 |
marker_color='rgb(55, 83, 109)'
|
112 |
))
|
|
|
|
|
113 |
fig.add_trace(go.Box(
|
114 |
x=df['價格'],
|
115 |
name='價格箱型圖',
|
116 |
marker_color='rgb(26, 118, 255)'
|
117 |
))
|
118 |
+
fig.update_layout(title_text='台南飯店價格分布', title_x=0.5, height=500)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
return fig
|
120 |
|
121 |
+
def upload_to_google_sheets(df):
|
122 |
+
creds = Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPE)
|
123 |
+
gs = gspread.authorize(creds)
|
124 |
+
sheet = gs.open_by_url(SPREADSHEET_URL)
|
125 |
+
worksheet = sheet.get_worksheet(0)
|
126 |
+
df1 = df.astype(str)
|
127 |
+
worksheet.update([df1.columns.values.tolist()] + df1.values.tolist())
|
128 |
+
return "資料已成功上傳到 Google Sheet!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
if mode == "資料爬取":
|
131 |
+
st.header("爬取台南飯店資料")
|
132 |
+
if st.button("開始爬取"):
|
133 |
+
df = scrape_booking_hotel()
|
134 |
+
if not df.empty:
|
135 |
+
st.dataframe(df)
|
136 |
+
df.to_csv('booking_hotels_tainan.csv', index=False, encoding='utf-8-sig')
|
137 |
+
st.success("資料爬取成功,已儲存至 booking_hotels_tainan.csv")
|
138 |
+
else:
|
139 |
+
st.error("未能成功爬取資料")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
elif mode == "資料視覺化":
|
142 |
+
st.header("分析與視覺化")
|
143 |
+
try:
|
144 |
+
df = pd.read_csv('booking_hotels_tainan.csv', encoding='utf-8-sig')
|
145 |
+
df['價格'] = pd.to_numeric(df['價格'], errors='coerce')
|
146 |
+
df['評分'] = df['評分'].apply(clean_rating)
|
147 |
+
st.plotly_chart(create_price_rating_scatter(df))
|
148 |
+
st.plotly_chart(create_price_distribution(df))
|
149 |
+
except Exception as e:
|
150 |
+
st.error(f"讀取或分析資料時發生錯誤:{e}")
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
+
elif mode == "上傳至 Google Sheet":
|
153 |
+
st.header("上傳資料至 Google Sheet")
|
154 |
+
try:
|
155 |
+
df = pd.read_csv('booking_hotels_tainan.csv', encoding='utf-8-sig')
|
156 |
+
result = upload_to_google_sheets(df)
|
157 |
+
st.success(result)
|
158 |
+
except Exception as e:
|
159 |
+
st.error(f"上傳資料時發生錯誤:{e}")
|