Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,040 Bytes
dd45176 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
<div align="center">
<h1>IDM-VTON: Improving Diffusion Models for Authentic Virtual Try-on in the Wild</h1>
<a href='https://idm-vton.github.io'><img src='https://img.shields.io/badge/Project-Page-green'></a>
<a href='https://arxiv.org/abs/2403.05139'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
<a href='https://huggingface.co/spaces/yisol/IDM-VTON'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-blue'></a>
<a href='https://huggingface.co/yisol/IDM-VTON'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a>
</div>
This is the official implementation of the paper ["Improving Diffusion Models for Authentic Virtual Try-on in the Wild"](https://arxiv.org/abs/2403.05139).
Star β us if you like it!
---
<!-- ![teaser2](assets/teaser2.png)
![teaser](assets/teaser.png) -->
## TODO LIST
- [x] demo model
- [x] inference code
- [ ] training code
## Requirements
```
git clone https://github.com/yisol/IDM-VTON.git
cd IDM-VTON
conda env create -f environment.yaml
conda activate idm
```
## Data preparation
### VITON-HD
You can download VITON-HD dataset from [VITON-HD](https://github.com/shadow2496/VITON-HD).
After download VITON-HD dataset, move vitonhd_test_tagged.json into the test folder.
Structure of the Dataset directory should be as follows.
```
train
|-- ...
test
|-- image
|-- image-densepose
|-- agnostic-mask
|-- cloth
|-- vitonhd_test_tagged.json
```
### DressCode
You can download DressCode dataset from [DressCode](https://github.com/aimagelab/dress-code).
We provide pre-computed densepose images and captions for garments [here](https://kaistackr-my.sharepoint.com/:u:/g/personal/cpis7_kaist_ac_kr/EaIPRG-aiRRIopz9i002FOwBDa-0-BHUKVZ7Ia5yAVVG3A?e=YxkAip).
We used [detectron2](https://github.com/facebookresearch/detectron2) for obtaining densepose images, refer [here](https://github.com/sangyun884/HR-VITON/issues/45) for more details.
After download the DressCode dataset, place image-densepose directories and caption text files as follows.
```
DressCode
|-- dresses
|-- images
|-- image-densepose
|-- dc_caption.txt
|-- ...
|-- lower_body
|-- images
|-- image-densepose
|-- dc_caption.txt
|-- ...
|-- upper_body
|-- images
|-- image-densepose
|-- dc_caption.txt
|-- ...
```
## Inference
### VITON-HD
Inference using python file with arguments,
```
accelerate launch inference.py \
--width 768 --height 1024 --num_inference_steps 30 \
--output_dir "result" \
--unpaired \
--data_dir "DATA_DIR" \
--seed 42 \
--test_batch_size 2 \
--guidance_scale 2.0
```
or, you can simply run with the script file.
```
sh inference.sh
```
### DressCode
For DressCode dataset, put the category you want to generate images via category argument,
```
accelerate launch inference_dc.py \
--width 768 --height 1024 --num_inference_steps 30 \
--output_dir "result" \
--unpaired \
--data_dir "DATA_DIR" \
--seed 42
--test_batch_size 2
--guidance_scale 2.0
--category "upper_body"
```
or, you can simply run with the script file.
```
sh inference.sh
```
## Acknowledgements
For the [demo](https://huggingface.co/spaces/yisol/IDM-VTON), GPUs are supported from [ZeroGPU](https://huggingface.co/zero-gpu-explorers), and masking generation codes are based on [OOTDiffusion](https://github.com/levihsu/OOTDiffusion) and [DCI-VTON](https://github.com/bcmi/DCI-VTON-Virtual-Try-On).
Parts of our code are based on [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter).
## Citation
```
@article{choi2024improving,
title={Improving Diffusion Models for Virtual Try-on},
author={Choi, Yisol and Kwak, Sangkyung and Lee, Kyungmin and Choi, Hyungwon and Shin, Jinwoo},
journal={arXiv preprint arXiv:2403.05139},
year={2024}
}
```
## License
The codes and checkpoints in this repository are under the [CC BY-NC-SA 4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
|