File size: 6,774 Bytes
15c9505
 
 
 
 
 
 
 
d6efa33
15c9505
4a48591
15c9505
 
 
 
 
 
 
 
 
 
 
 
 
4a48591
15c9505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import gradio as gr
from uuid import uuid4
from threading import Thread
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer

from theme_dropdown import create_theme_dropdown


model_name = "RootYuan/RootYuan-RedLing-7B-v0.1"
max_new_tokens = 2048
device = 'cpu'


DEFAULT_SYSTEM_MESSAGE = """
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
"""

VISION_TOKEN = '<img>'
VISION_TOKENS = '\n' + VISION_TOKEN * 32 + '\n'
EOT_TOKEN = "<EOT>"

PROMPT_TEMPLATE = "USER:{user}<EOT>ASSISTANT:{assistant}{eos_token}"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)

dropdown, js = create_theme_dropdown()

def get_uuid():
    return str(uuid4())


def add_text(message, history):
    # Append the user's message to the conversation history
    return "", history + [[message, ""]]


def add_media(media, history):
    media_name = media.name
    media_format = media_name.split(".")[-1]
    if media_format in ["jpg", "jpeg", "png"]:
        media_type = "image"
    history = history + [[(media_name, media_type), ""]]
    return history


def convert_history_to_text(history):
    conversations = []
    add_vision_tokens = False
    for item in history[:-1]:
        if isinstance(item[0], tuple):
            add_vision_tokens = True
        else:
            if add_vision_tokens:
                conversation = PROMPT_TEMPLATE.format(
                    media=VISION_TOKENS, 
                    user=item[0], 
                    assistant=item[1], 
                    eos_token=EOT_TOKEN,
                )
                add_vision_tokens = False
            else:
                conversation = PROMPT_TEMPLATE.format(
                    media='',
                    user=item[0], 
                    assistant=item[1], 
                    eos_token=EOT_TOKEN,
                )
            conversations.append(conversation)
                   
    text = "".join(conversations)
    last = PROMPT_TEMPLATE.format(
        media='',
        user=history[-1][0], 
        assistant=history[-1][1], 
        eos_token='',
    )
    text += last
    
    return text


def bot(history, temperature, top_k, sys_msg):
    print(f"history: {history}")
    
    # Construct the input message string for the model by concatenating the current system message and conversation history
    messages = sys_msg + convert_history_to_text(history)
    input_ids = tokenizer(messages, return_tensors="pt").input_ids.to(device)
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(
        input_ids=input_ids,
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_k=top_k,
        streamer=streamer,
    )
    
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    
    # Initialize an empty string to store the generated text
    generated_text = ""
    for new_text in streamer:
        generated_text += new_text
        history[-1][1] = generated_text
        yield history


with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
    with gr.Row().style(equal_height=True):
        with gr.Column(scale=12):
            gr.Markdown(
                """
                # Visual Assistant Lab
                """
            )
        with gr.Column(scale=2):
            with gr.Box():
                dropdown.render()
                toggle_dark = gr.Button(value="Toggle Dark").style(full_width=True)
    dropdown.change(None, dropdown, None, _js=js)
    toggle_dark.click(lambda: None, None, None, _js="() => {document.body.classList.toggle('dark')}")
    # conversation_id = gr.State(get_uuid)
    with gr.Row():
        with gr.Accordion("System Message", open=False):
            sys_msg = gr.Textbox(
                value=DEFAULT_SYSTEM_MESSAGE,
                label="System Message",
                info="Instruct the AI Assistant to set its beaviour",
                show_label=False,
            )
    with gr.Row():
        chatbot = gr.Chatbot(label="Assistant").style(height=500)
    with gr.Row():
        with gr.Accordion("Advanced Settings:", open=False):
            with gr.Row().style(equal_height=True):
                with gr.Column():
                    temperature = gr.Slider(
                        label="Temperature",
                        value=0.1,
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        interactive=True,
                        info="Higher values produce more diverse outputs",
                    )
                with gr.Column():
                    top_k = gr.Slider(
                        label="Top-k",
                        value=0,
                        minimum=0.0,
                        maximum=200,
                        step=1,
                        interactive=True,
                        info="Sample from a shortlist of top-k tokens — 0 to disable and sample from all tokens.",
                    )
    with gr.Row().style(equal_height=True):
        with gr.Column(scale=12):
            msg = gr.Textbox(
                label="Chat Message Box",
                placeholder="Hi! Type here, Press [Enter] to send...",
                show_label=False,
            ).style(container=False)
        with gr.Column(scale=2):
            send = gr.Button("Send")
    with gr.Row().style(equal_height=True):
        media = gr.UploadButton("Upload files", file_types=["image", "video", "audio"])
        stop = gr.Button("Stop")
        clear = gr.Button("Clear")
        
    send_event = msg.submit(
        fn=add_text,
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=False,
    ).then(
        fn=bot,
        inputs=[chatbot, temperature, top_k, sys_msg],
        outputs=chatbot,
        queue=True,
    )
    
    media.upload(
        fn=add_media, 
        inputs=[media, chatbot], 
        outputs=[chatbot],
    )
    
    send_click_event = send.click(
        fn=add_text,
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=False,
    ).then(
        fn=bot,
        inputs=[chatbot, temperature, top_k, sys_msg],
        outputs=chatbot,
        queue=True,
    )
    
    stop.click(
        fn=None,
        inputs=None,
        outputs=None,
        cancels=[send_event, send_click_event],
        queue=False,
    )
    clear.click(lambda: None, None, chatbot, queue=False)
    

if __name__ == "__main__":
    demo.queue(max_size=128, concurrency_count=2)
    demo.launch()