LLM-Lab / app.py
RootYuan's picture
Update app.py
9b21da5
raw
history blame
6.86 kB
import torch
import gradio as gr
from uuid import uuid4
from threading import Thread
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from theme_dropdown import create_theme_dropdown
model_name = "RootYuan/RootYuan-RedLing-7B-v0.1"
max_new_tokens = 2048
device = 'cuda' if torch.cuda.is_available() else 'cpu'
DEFAULT_SYSTEM_MESSAGE = """
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
"""
VISION_TOKEN = '<img>'
VISION_TOKENS = '\n' + VISION_TOKEN * 32 + '\n'
EOT_TOKEN = "<EOT>"
PROMPT_TEMPLATE = "USER:{user}<EOT>ASSISTANT:{assistant}{eos_token}"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
dropdown, js = create_theme_dropdown()
def get_uuid():
return str(uuid4())
def add_text(message, history):
# Append the user's message to the conversation history
return "", history + [[message, ""]]
def add_media(media, history):
media_name = media.name
media_format = media_name.split(".")[-1]
if media_format in ["jpg", "jpeg", "png"]:
media_type = "image"
history = history + [[(media_name, media_type), ""]]
return history
def convert_history_to_text(history):
conversations = []
add_vision_tokens = False
for item in history[:-1]:
if isinstance(item[0], tuple):
add_vision_tokens = True
else:
if add_vision_tokens:
conversation = PROMPT_TEMPLATE.format(
media=VISION_TOKENS,
user=item[0],
assistant=item[1],
eos_token=EOT_TOKEN,
)
add_vision_tokens = False
else:
conversation = PROMPT_TEMPLATE.format(
media='',
user=item[0],
assistant=item[1],
eos_token=EOT_TOKEN,
)
conversations.append(conversation)
text = "".join(conversations)
last = PROMPT_TEMPLATE.format(
media='',
user=history[-1][0],
assistant=history[-1][1],
eos_token='',
)
text += last
return text
def bot(history, temperature, top_k, sys_msg):
print(f"history: {history}")
# Construct the input message string for the model by concatenating the current system message and conversation history
messages = sys_msg + convert_history_to_text(history)
input_ids = tokenizer(messages, return_tensors="pt").input_ids.to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
input_ids=input_ids,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_k=top_k,
streamer=streamer,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Initialize an empty string to store the generated text
generated_text = ""
for new_text in streamer:
generated_text += new_text
history[-1][1] = generated_text
yield history
with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
with gr.Row().style(equal_height=True):
with gr.Column(scale=12):
gr.Markdown(
"""
# Visual Assistant Lab
"""
)
with gr.Column(scale=2):
with gr.Box():
dropdown.render()
toggle_dark = gr.Button(value="Toggle Dark").style(full_width=True)
dropdown.change(None, dropdown, None, _js=js)
toggle_dark.click(lambda: None, None, None, _js="() => {document.body.classList.toggle('dark')}")
# conversation_id = gr.State(get_uuid)
with gr.Row():
with gr.Accordion("System Message", open=False):
sys_msg = gr.Textbox(
value=DEFAULT_SYSTEM_MESSAGE,
label="System Message",
info="Instruct the AI Assistant to set its beaviour",
show_label=False,
)
with gr.Row():
chatbot = gr.Chatbot(label="Assistant").style(height=500)
with gr.Row():
with gr.Accordion("Advanced Settings:", open=False):
with gr.Row().style(equal_height=True):
with gr.Column():
temperature = gr.Slider(
label="Temperature",
value=0.1,
minimum=0.0,
maximum=1.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
with gr.Column():
top_k = gr.Slider(
label="Top-k",
value=0,
minimum=0.0,
maximum=200,
step=1,
interactive=True,
info="Sample from a shortlist of top-k tokens β€” 0 to disable and sample from all tokens.",
)
with gr.Row().style(equal_height=True):
with gr.Column(scale=12):
msg = gr.Textbox(
label="Chat Message Box",
placeholder="Hi! Type here, Press [Enter] to send...",
show_label=False,
).style(container=False)
with gr.Column(scale=2):
send = gr.Button("Send")
with gr.Row().style(equal_height=True):
media = gr.UploadButton("Upload files", file_types=["image", "video", "audio"])
stop = gr.Button("Stop")
clear = gr.Button("Clear")
send_event = msg.submit(
fn=add_text,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=False,
).then(
fn=bot,
inputs=[chatbot, temperature, top_k, sys_msg],
outputs=chatbot,
queue=True,
)
media.upload(
fn=add_media,
inputs=[media, chatbot],
outputs=[chatbot],
)
send_click_event = send.click(
fn=add_text,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=False,
).then(
fn=bot,
inputs=[chatbot, temperature, top_k, sys_msg],
outputs=chatbot,
queue=True,
)
stop.click(
fn=None,
inputs=None,
outputs=None,
cancels=[send_event, send_click_event],
queue=False,
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.queue(max_size=128, concurrency_count=2)
demo.launch()