Spaces:
Running
Running
max
commited on
Commit
•
d6c4ad3
1
Parent(s):
61f59ec
initial commit
Browse files- app.py +136 -0
- packages.txt +1 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
from sklearn.cluster import KMeans
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
import gradio.components as gc
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
|
11 |
+
def pixart(
|
12 |
+
i,
|
13 |
+
block_size=4,
|
14 |
+
n_clusters=5,
|
15 |
+
hsv_weights=[0, 0, 1],
|
16 |
+
local_contrast_blur_radius=51, # has to be odd
|
17 |
+
upscale=True,
|
18 |
+
seed=None,
|
19 |
+
):
|
20 |
+
w, h = i.size
|
21 |
+
dw = w//block_size
|
22 |
+
dh = h//block_size
|
23 |
+
|
24 |
+
# always resize with NEAREST to keep the original colors
|
25 |
+
i = i.resize((dw, dh), Image.Resampling.NEAREST)
|
26 |
+
ai = np.array(i)
|
27 |
+
|
28 |
+
if seed is None:
|
29 |
+
# seed = np.random.randint(0, 2**32 - 1)
|
30 |
+
seed = np.random.randint(0, 2**16 - 1)
|
31 |
+
km = KMeans(n_clusters=n_clusters, random_state=seed)
|
32 |
+
|
33 |
+
hsv = cv2.cvtColor(ai, cv2.COLOR_RGB2HSV)
|
34 |
+
bhsv = cv2.GaussianBlur(
|
35 |
+
hsv,
|
36 |
+
(local_contrast_blur_radius, local_contrast_blur_radius),
|
37 |
+
0,
|
38 |
+
borderType=cv2.BORDER_REPLICATE
|
39 |
+
)
|
40 |
+
hsv32 = hsv.astype(np.float32)
|
41 |
+
km.fit(
|
42 |
+
hsv32.reshape(-1, hsv32.shape[-1]),
|
43 |
+
# (sharp-blurred) gives large values if a pixel stands out from its surroundings
|
44 |
+
# raise to the power of 4 to make the difference more pronounced.
|
45 |
+
# this preserves rare specks of color by increasing the probability of them getting their own cluster
|
46 |
+
sample_weight=(
|
47 |
+
np.linalg.norm((hsv32 - bhsv), axis=-1).reshape(-1)
|
48 |
+
** 4
|
49 |
+
)
|
50 |
+
)
|
51 |
+
label_grid = km.labels_.reshape(hsv32.shape[:2])
|
52 |
+
centers = km.cluster_centers_ # hsv values
|
53 |
+
|
54 |
+
def pick_representative_pixel(cluster):
|
55 |
+
'''pick the representative pixel for a cluster'''
|
56 |
+
most_sat_color = (hsv[label_grid == cluster] @
|
57 |
+
np.array(hsv_weights)).argmax()
|
58 |
+
return hsv[label_grid == cluster][most_sat_color]
|
59 |
+
cluster_colors = np.array([
|
60 |
+
pick_representative_pixel(c)
|
61 |
+
for c in range(centers.shape[0])])
|
62 |
+
|
63 |
+
# assign each pixel the color of its cluster
|
64 |
+
ki = cluster_colors[label_grid]
|
65 |
+
|
66 |
+
rgb = cv2.cvtColor(ki.astype(np.uint8), cv2.COLOR_HSV2RGB)
|
67 |
+
i = Image.fromarray(rgb)
|
68 |
+
if upscale:
|
69 |
+
i = i.resize((w, h), Image.Resampling.NEAREST)
|
70 |
+
return i, seed
|
71 |
+
|
72 |
+
|
73 |
+
def query(
|
74 |
+
i: Image.Image,
|
75 |
+
block_size: str,
|
76 |
+
n_clusters, # =5,
|
77 |
+
hsv_weights, # ='0,0,1'
|
78 |
+
local_contrast_blur_radius, # =51 has to be odd
|
79 |
+
seed, # =42,
|
80 |
+
):
|
81 |
+
bs = float(block_size)
|
82 |
+
w, h = i.size
|
83 |
+
if bs < 1:
|
84 |
+
blsz = int(bs * min(w, h))
|
85 |
+
else:
|
86 |
+
blsz = int(bs)
|
87 |
+
|
88 |
+
hw = [float(w) for w in hsv_weights.split(',')]
|
89 |
+
|
90 |
+
pxart, usedseed = pixart(
|
91 |
+
i,
|
92 |
+
block_size=blsz,
|
93 |
+
n_clusters=n_clusters,
|
94 |
+
hsv_weights=hw,
|
95 |
+
local_contrast_blur_radius=local_contrast_blur_radius,
|
96 |
+
upscale=True,
|
97 |
+
seed=int(seed) if seed != '' else None,
|
98 |
+
)
|
99 |
+
return pxart.convert('P', palette=Image.Palette.ADAPTIVE, colors=n_clusters), usedseed
|
100 |
+
|
101 |
+
|
102 |
+
# %%
|
103 |
+
searchimage = gc.Image(
|
104 |
+
# shape=(512, 512),
|
105 |
+
label="Search image", type='pil')
|
106 |
+
block_size = gc.Textbox(
|
107 |
+
"0.01",
|
108 |
+
label='Block Size ',
|
109 |
+
placeholder="e.g. 8 for 8 pixels. 0.01 for 1% of min(w,h) (<1 for percentages, >= 1 for pixels)")
|
110 |
+
palette_size = gc.Slider(
|
111 |
+
1, 256, 32, step=1, label='Palette Size (Number of Colors)')
|
112 |
+
hsv_weights = gc.Textbox(
|
113 |
+
"0,0,1",
|
114 |
+
label='HSV Weights. Weights of the channels when selecting a "representative pixel"/centroid from a cluster of pixels',
|
115 |
+
placeholder='e.g. 0,0,1 to only consider the V channel (which seems to work well)')
|
116 |
+
lcbr = gc.Slider(
|
117 |
+
3, 512, 51, step=2, label='Blur radius to calculate local contrast')
|
118 |
+
|
119 |
+
seed = gc.Textbox(
|
120 |
+
"",
|
121 |
+
label='Seed for the random number generator (empty to randomize)',
|
122 |
+
placeholder='e.g. 42')
|
123 |
+
|
124 |
+
outimage = gc.Image(shape=(224, 224), label="Output", type='pil')
|
125 |
+
seedout = gc.Textbox(label='used seed')
|
126 |
+
|
127 |
+
|
128 |
+
gr.Interface(
|
129 |
+
query,
|
130 |
+
[searchimage, block_size, palette_size, hsv_weights, lcbr, seed],
|
131 |
+
[outimage, seedout],
|
132 |
+
title="kmeans-Pixartifier",
|
133 |
+
description=f"Turns images into pixel art using kmeans clustering",
|
134 |
+
analytics_enabled=False,
|
135 |
+
allow_flagging='never',
|
136 |
+
).launch()
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python3-opencv
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python
|
2 |
+
scikit-learn
|
3 |
+
|