Spaces:
Runtime error
Runtime error
max
commited on
Commit
·
89023a7
1
Parent(s):
04dbeac
added example scripts
Browse files- app.py +4 -0
- outpainting_example1.py +38 -0
- outpainting_example2.py +197 -0
app.py
CHANGED
@@ -308,6 +308,10 @@ with gr.Blocks() as demo:
|
|
308 |
# MAT Primer for Stable Diffusion
|
309 |
## based on MAT: Mask-Aware Transformer for Large Hole Image Inpainting
|
310 |
### create a primer for use in stable diffusion outpainting
|
|
|
|
|
|
|
|
|
311 |
''')
|
312 |
|
313 |
gr.HTML(f'''<a href="{maturl}">{maturl}</a>''')
|
|
|
308 |
# MAT Primer for Stable Diffusion
|
309 |
## based on MAT: Mask-Aware Transformer for Large Hole Image Inpainting
|
310 |
### create a primer for use in stable diffusion outpainting
|
311 |
+
|
312 |
+
i have added 2 example scripts to the repo:
|
313 |
+
- outpainting_example1.py using the inpainting pipeline
|
314 |
+
- outpainting_example2.py using the img2img pipeline. this is basically what i used for the examples below
|
315 |
''')
|
316 |
|
317 |
gr.HTML(f'''<a href="{maturl}">{maturl}</a>''')
|
outpainting_example1.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
# an example script of how to do outpainting with the diffusers inpainting pipeline
|
3 |
+
# this is basically just the example from
|
4 |
+
# https://huggingface.co/runwayml/stable-diffusion-inpainting
|
5 |
+
#%
|
6 |
+
from diffusers import StableDiffusionInpaintPipeline
|
7 |
+
|
8 |
+
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from diffusers import StableDiffusionInpaintPipeline
|
13 |
+
|
14 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
15 |
+
"runwayml/stable-diffusion-inpainting",
|
16 |
+
revision="fp16",
|
17 |
+
torch_dtype=torch.float16,
|
18 |
+
)
|
19 |
+
pipe.to("cuda")
|
20 |
+
|
21 |
+
# load the image, extract the mask
|
22 |
+
rgba = Image.open('primed_image_with_alpha_channel.png')
|
23 |
+
mask_image = Image.fromarray(np.array(rgba)[:, :, 3] == 0)
|
24 |
+
|
25 |
+
# run the pipeline
|
26 |
+
prompt = "Face of a yellow cat, high resolution, sitting on a park bench."
|
27 |
+
# image and mask_image should be PIL images.
|
28 |
+
# The mask structure is white for outpainting and black for keeping as is
|
29 |
+
image = pipe(
|
30 |
+
prompt=prompt,
|
31 |
+
image=rgba,
|
32 |
+
mask_image=mask_image,
|
33 |
+
).images[0]
|
34 |
+
image
|
35 |
+
|
36 |
+
# %%
|
37 |
+
# the vae does lossy encoding, we could get better quality if we pasted the original image into our result.
|
38 |
+
# this may yield visible edges
|
outpainting_example2.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
# an example script of how to do outpainting with diffusers img2img pipeline
|
3 |
+
# should be compatible with any stable diffusion model
|
4 |
+
# (only tested with runwayml/stable-diffusion-v1-5)
|
5 |
+
|
6 |
+
from typing import Callable, List, Optional, Union
|
7 |
+
from PIL import Image
|
8 |
+
import PIL
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from diffusers import StableDiffusionImg2ImgPipeline
|
13 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
14 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import preprocess
|
15 |
+
|
16 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
17 |
+
"runwayml/stable-diffusion-v1-5",
|
18 |
+
revision="fp16",
|
19 |
+
torch_dtype=torch.float16,
|
20 |
+
)
|
21 |
+
|
22 |
+
pipe.set_use_memory_efficient_attention_xformers(True)
|
23 |
+
pipe.to("cuda")
|
24 |
+
# %%
|
25 |
+
# load the image, extract the mask
|
26 |
+
rgba = Image.open('primed_image_with_alpha_channel.png')
|
27 |
+
mask_full = np.array(rgba)[:, :, 3] == 0
|
28 |
+
rgb = rgba.convert('RGB')
|
29 |
+
# %%
|
30 |
+
|
31 |
+
# resize/convert the mask to the right size
|
32 |
+
# for 512x512, the mask should be 1x4x64x64
|
33 |
+
hw = np.array(mask_full.shape)
|
34 |
+
h, w = (hw - hw % 32) // 8
|
35 |
+
mask_image = Image.fromarray(mask_full).resize((w, h), Image.NEAREST)
|
36 |
+
mask = (np.array(mask_image) == 0)[None, None]
|
37 |
+
mask = np.concatenate([mask]*4, axis=1)
|
38 |
+
mask = torch.from_numpy(mask).to('cuda')
|
39 |
+
mask.shape
|
40 |
+
|
41 |
+
# %%
|
42 |
+
|
43 |
+
|
44 |
+
@torch.no_grad()
|
45 |
+
def outpaint(
|
46 |
+
self: StableDiffusionImg2ImgPipeline,
|
47 |
+
prompt: Union[str, List[str]] = None,
|
48 |
+
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
49 |
+
strength: float = 0.8,
|
50 |
+
num_inference_steps: Optional[int] = 50,
|
51 |
+
guidance_scale: Optional[float] = 7.5,
|
52 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
53 |
+
num_images_per_prompt: Optional[int] = 1,
|
54 |
+
eta: Optional[float] = 0.0,
|
55 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
56 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
57 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
58 |
+
output_type: Optional[str] = "pil",
|
59 |
+
return_dict: bool = True,
|
60 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
61 |
+
callback_steps: Optional[int] = 1,
|
62 |
+
**kwargs,
|
63 |
+
):
|
64 |
+
r"""
|
65 |
+
copy of the original img2img pipeline's __call__()
|
66 |
+
https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py
|
67 |
+
|
68 |
+
Changes are marked with <EDIT> and </EDIT>
|
69 |
+
"""
|
70 |
+
# message = "Please use `image` instead of `init_image`."
|
71 |
+
# init_image = deprecate("init_image", "0.14.0", message, take_from=kwargs)
|
72 |
+
# image = init_image or image
|
73 |
+
|
74 |
+
# 1. Check inputs. Raise error if not correct
|
75 |
+
self.check_inputs(prompt, strength, callback_steps,
|
76 |
+
negative_prompt, prompt_embeds, negative_prompt_embeds)
|
77 |
+
|
78 |
+
# 2. Define call parameters
|
79 |
+
if prompt is not None and isinstance(prompt, str):
|
80 |
+
batch_size = 1
|
81 |
+
elif prompt is not None and isinstance(prompt, list):
|
82 |
+
batch_size = len(prompt)
|
83 |
+
else:
|
84 |
+
batch_size = prompt_embeds.shape[0]
|
85 |
+
device = self._execution_device
|
86 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
87 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
88 |
+
# corresponds to doing no classifier free guidance.
|
89 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
90 |
+
|
91 |
+
# 3. Encode input prompt
|
92 |
+
prompt_embeds = self._encode_prompt(
|
93 |
+
prompt,
|
94 |
+
device,
|
95 |
+
num_images_per_prompt,
|
96 |
+
do_classifier_free_guidance,
|
97 |
+
negative_prompt,
|
98 |
+
prompt_embeds=prompt_embeds,
|
99 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
100 |
+
)
|
101 |
+
|
102 |
+
# 4. Preprocess image
|
103 |
+
image = preprocess(image)
|
104 |
+
|
105 |
+
# 5. set timesteps
|
106 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
107 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
108 |
+
num_inference_steps, strength, device)
|
109 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
110 |
+
|
111 |
+
# 6. Prepare latent variables
|
112 |
+
latents = self.prepare_latents(
|
113 |
+
image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
|
114 |
+
)
|
115 |
+
|
116 |
+
# <EDIT>
|
117 |
+
# store the encoded version of the original image to overwrite
|
118 |
+
# what the UNET generates "underneath" our image on each step
|
119 |
+
encoded_original = (self.vae.config.scaling_factor *
|
120 |
+
self.vae.encode(
|
121 |
+
image.to(latents.device, latents.dtype)
|
122 |
+
).latent_dist.mean)
|
123 |
+
# </EDIT>
|
124 |
+
|
125 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
126 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
127 |
+
|
128 |
+
# 8. Denoising loop
|
129 |
+
num_warmup_steps = len(timesteps) - \
|
130 |
+
num_inference_steps * self.scheduler.order
|
131 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
132 |
+
for i, t in enumerate(timesteps):
|
133 |
+
# expand the latents if we are doing classifier free guidance
|
134 |
+
latent_model_input = torch.cat(
|
135 |
+
[latents] * 2) if do_classifier_free_guidance else latents
|
136 |
+
latent_model_input = self.scheduler.scale_model_input(
|
137 |
+
latent_model_input, t)
|
138 |
+
|
139 |
+
# predict the noise residual
|
140 |
+
noise_pred = self.unet(latent_model_input, t,
|
141 |
+
encoder_hidden_states=prompt_embeds).sample
|
142 |
+
|
143 |
+
# perform guidance
|
144 |
+
if do_classifier_free_guidance:
|
145 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
146 |
+
noise_pred = noise_pred_uncond + guidance_scale * \
|
147 |
+
(noise_pred_text - noise_pred_uncond)
|
148 |
+
|
149 |
+
# compute the previous noisy sample x_t -> x_t-1
|
150 |
+
latents = self.scheduler.step(
|
151 |
+
noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
152 |
+
|
153 |
+
# <EDIT> paste unmasked regions from the original image
|
154 |
+
noise = torch.randn(
|
155 |
+
encoded_original.shape, generator=generator, device=device)
|
156 |
+
noised_encoded_original = self.scheduler.add_noise(
|
157 |
+
encoded_original, noise, t).to(noise_pred.device, noise_pred.dtype)
|
158 |
+
latents[mask] = noised_encoded_original[mask]
|
159 |
+
# </EDIT>
|
160 |
+
|
161 |
+
# call the callback, if provided
|
162 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
163 |
+
progress_bar.update()
|
164 |
+
if callback is not None and i % callback_steps == 0:
|
165 |
+
callback(i, t, latents)
|
166 |
+
|
167 |
+
# 9. Post-processing
|
168 |
+
image = self.decode_latents(latents)
|
169 |
+
|
170 |
+
# 10. Run safety checker
|
171 |
+
image, has_nsfw_concept = self.run_safety_checker(
|
172 |
+
image, device, prompt_embeds.dtype)
|
173 |
+
|
174 |
+
# 11. Convert to PIL
|
175 |
+
if output_type == "pil":
|
176 |
+
image = self.numpy_to_pil(image)
|
177 |
+
|
178 |
+
if not return_dict:
|
179 |
+
return (image, has_nsfw_concept)
|
180 |
+
|
181 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
182 |
+
|
183 |
+
|
184 |
+
# %%
|
185 |
+
image = outpaint(
|
186 |
+
pipe,
|
187 |
+
image=rgb,
|
188 |
+
prompt="forest in the style of Tim Hildebrandt",
|
189 |
+
strength=0.5,
|
190 |
+
num_inference_steps=50,
|
191 |
+
guidance_scale=7.5,
|
192 |
+
).images[0]
|
193 |
+
image
|
194 |
+
|
195 |
+
# %%
|
196 |
+
# the vae does lossy encoding, we could get better quality if we pasted the original image into our result.
|
197 |
+
# this may yield visible edges
|