# %% # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from networks.mat import Generator import gradio as gr import gradio.components as gc import base64 import glob import os import random import re from http import HTTPStatus from io import BytesIO from typing import Dict, List, NamedTuple, Optional, Tuple import click import cv2 import numpy as np import PIL.Image import torch import torch.nn.functional as F from PIL import Image, ImageDraw, ImageOps from pydantic import BaseModel import dnnlib import legacy pyspng = None def num_range(s: str) -> List[int]: '''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.''' range_re = re.compile(r'^(\d+)-(\d+)$') m = range_re.match(s) if m: return list(range(int(m.group(1)), int(m.group(2))+1)) vals = s.split(',') return [int(x) for x in vals] def copy_params_and_buffers(src_module, dst_module, require_all=False): assert isinstance(src_module, torch.nn.Module) assert isinstance(dst_module, torch.nn.Module) src_tensors = {name: tensor for name, tensor in named_params_and_buffers(src_module)} for name, tensor in named_params_and_buffers(dst_module): assert (name in src_tensors) or (not require_all) if name in src_tensors: tensor.copy_(src_tensors[name].detach()).requires_grad_( tensor.requires_grad) def params_and_buffers(module): assert isinstance(module, torch.nn.Module) return list(module.parameters()) + list(module.buffers()) def named_params_and_buffers(module): assert isinstance(module, torch.nn.Module) return list(module.named_parameters()) + list(module.named_buffers()) class Inpainter: def __init__(self, network_pkl, resolution=512, truncation_psi=1, noise_mode='const', sdevice='cpu' ): self.resolution = resolution self.truncation_psi = truncation_psi self.noise_mode = noise_mode print(f'Loading networks from: {network_pkl}') self.device = torch.device(sdevice) with dnnlib.util.open_url(network_pkl) as f: G_saved = ( legacy.load_network_pkl(f) ['G_ema'] .to(self.device) .eval() .requires_grad_(False)) # type: ignore net_res = 512 if resolution > 512 else resolution self.G = ( Generator( z_dim=512, c_dim=0, w_dim=512, img_resolution=net_res, img_channels=3 ) .to(self.device) .eval() .requires_grad_(False) ) copy_params_and_buffers(G_saved, self.G, require_all=True) def generate_images2( self, dpath: List[PIL.Image.Image], mpath: List[Optional[PIL.Image.Image]], seed: int = 42, ): """ Generate images using pretrained network pickle. """ resolution = self.resolution truncation_psi = self.truncation_psi noise_mode = self.noise_mode # seed = 240 # pick up a random number def seed_all(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) if seed is not None: seed_all(seed) # no Labels. label = torch.zeros([1, self.G.c_dim], device=self.device) def read_image(image): image = np.array(image) if image.ndim == 2: image = image[:, :, np.newaxis] # HW => HWC image = np.repeat(image, 3, axis=2) image = image.transpose(2, 0, 1) # HWC => CHW image = image[:3] return image if resolution != 512: noise_mode = 'random' results = [] with torch.no_grad(): for i, (ipath, m) in enumerate(zip(dpath, mpath)): if seed is None: seed_all(i) image = read_image(ipath) image = (torch.from_numpy(image).float().to( self. device) / 127.5 - 1).unsqueeze(0) mask = np.array(m).astype(np.float32) / 255.0 mask = torch.from_numpy(mask).float().to( self. device).unsqueeze(0).unsqueeze(0) z = torch.from_numpy(np.random.randn( 1, self.G.z_dim)).to(self.device) output = self.G(image, mask, z, label, truncation_psi=truncation_psi, noise_mode=noise_mode) output = (output.permute(0, 2, 3, 1) * 127.5 + 127.5).round().clamp(0, 255).to(torch.uint8) output = output[0].cpu().numpy() results.append(PIL.Image.fromarray(output, 'RGB')) return results # if __name__ == "__main__": # generate_images() # pylint: disable=no-value-for-parameter # ---------------------------------------------------------------------------- def mask_to_alpha(img, mask): img = img.copy() img.putalpha(mask) return img def blend(src, target, mask): mask = np.expand_dims(mask, axis=-1) result = (1-mask) * src + mask * target return Image.fromarray(result.astype(np.uint8)) def pad(img, size=(128, 128), tosize=(512, 512), border=1): if isinstance(size, float): size = (int(img.size[0] * size), int(img.size[1] * size)) # remove border w, h = tosize new_img = Image.new('RGBA', (w, h)) rimg = img.resize(size, resample=Image.Resampling.NEAREST) rimg = ImageOps.crop(rimg, border=border) tw, th = size tw, th = tw - border*2, th - border*2 tc = ((w-tw)//2, (h-th)//2) new_img.paste(rimg, tc) mask = Image.new('L', (w, h)) white = Image.new('L', (tw, th), 255) mask.paste(white, tc) if 'A' in rimg.getbands(): mask.paste(rimg.getchannel('A'), tc) return new_img, mask def b64_to_img(b64): return Image.open(BytesIO(base64.b64decode(b64))) def img_to_b64(img): with BytesIO() as f: img.save(f, format='PNG') return base64.b64encode(f.getvalue()).decode('utf-8') class Predictor: def __init__(self): """Load the model into memory to make running multiple predictions efficient""" self.models = { "places2": Inpainter( network_pkl='models/Places_512_FullData.pkl', resolution=512, truncation_psi=1., noise_mode='const', ), "places2+laion300k": Inpainter( network_pkl='models/Places_512_FullData+LAION300k.pkl', resolution=512, truncation_psi=1., noise_mode='const', ), "places2+laion300k+laion300k(opmasked)": Inpainter( network_pkl='models/Places_512_FullData+LAION300k+OPM300k.pkl', resolution=512, truncation_psi=1., noise_mode='const', ), "places2+laion300k+laion1200k(opmasked)": Inpainter( network_pkl='models/Places_512_FullData+LAION300k+OPM1200k.pkl', resolution=512, truncation_psi=1., noise_mode='const', ), } # The arguments and types the model takes as input def predict( self, img: Image.Image, tosize=(512, 512), border=5, seed=42, size=0.5, model='places2', ) -> Image: i, m = pad( img, size=size, # (328, 328), tosize=tosize, border=border ) """Run a single prediction on the model""" imgs = self.models[model].generate_images2( dpath=[i.resize((512, 512), resample=Image.Resampling.NEAREST)], mpath=[m.resize((512, 512), resample=Image.Resampling.NEAREST)], seed=seed, ) img_op_raw = imgs[0].convert('RGBA') img_op_raw = img_op_raw.resize( tosize, resample=Image.Resampling.NEAREST) inpainted = img_op_raw.copy() # paste original image to remove inpainting/scaling artifacts inpainted = blend( i, inpainted, 1-(np.array(m) / 255) ) minpainted = mask_to_alpha(inpainted, m) return inpainted, minpainted, ImageOps.invert(m) predictor = Predictor() # %% def _outpaint(img, tosize, border, seed, size, model): img_op = predictor.predict( img, border=border, seed=seed, tosize=(tosize, tosize), size=float(size), model=model, ) return img_op # %% searchimage = gc.Image(shape=(224, 224), label="image", type='pil', image_mode='RGBA') to_size = gc.Slider(1, 1920, 512, step=1, label='output size') border = gc.Slider( 1, 50, 0, step=1, label='border to crop from the image before outpainting') seed = gc.Slider(1, 65536, 10, step=1, label='seed') size = gc.Slider(0, 1, .5, step=0.01, label='scale of the image before outpainting') out = gc.Image(label="primed image with alpha channel", type='pil', image_mode='RGBA') outwithoutalpha = gc.Image( label="primed image without alpha channel", type='pil') mask = gc.Image(label="outpainting mask", type='pil') model = gc.Dropdown( choices=['places2', 'places2+laion300k', 'places2+laion300k+laion300k(opmasked)', 'places2+laion300k+laion1200k(opmasked)' ], value='places2+laion300k+laion1200k(opmasked)', label='model', ) maturl = 'https://github.com/fenglinglwb/MAT' gr.Interface( _outpaint, [searchimage, to_size, border, seed, size, model], [outwithoutalpha, out, mask], title=f"MAT Primer for Stable Diffusion\n\nbased on MAT: Mask-Aware Transformer for Large Hole Image Inpainting\n\n{maturl}", description=f""" create a primer for use in stable diffusion outpainting
examples with strength 0.5 """, analytics_enabled=False, allow_flagging='never', ).launch()