Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
# Load the text summarization model pipeline | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
# Streamlit application title | |
st.title("Sentiment Analysis with text summarization for Singapore Airline") | |
# Text input for user to enter the text to summarize | |
text = st.text_area("Enter the text to analyze:", "") | |
# Perform text summarization when the user clicks the "Go!" button | |
if st.button("Go!"): | |
# Perform text summarization on the input text | |
results = summarizer(text)[0]['summary_text'] | |
st.write("Step 1: Text after summarization:") | |
st.write(results) | |
# Sentiment analysis as the second step | |
classifier = pipeline("text-classification", model="Rrrrrrrita/Custom_Sentiment", return_all_scores=True) | |
st.write('Step 2: Sentiment Analysis:') | |
st.write("\t\t Classification for 3 emotions: positve, neutral, and negative") | |
labels = classifier(text)[0] | |
max_score = float('-inf') | |
max_label = '' | |
for label in labels: | |
if label['score'] > max_score: | |
max_score = label['score'] | |
max_label = label['label'] | |
st.write("\tLabel:", max_label) | |
st.write("\tScore:", max_score) |