File size: 18,079 Bytes
2024325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import argparse
import logging
import math
import re

import numpy as np
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from transformers import get_scheduler, AutoTokenizer, AdamW, SchedulerType, AutoModelForSeq2SeqLM, \
    DataCollatorWithPadding

from datasets import load_dataset

logger = logging.getLogger(__name__)


def get_parser():
    parser = argparse.ArgumentParser(description="Train ELI5 seq2seq answer generation model")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default="vblagoje/lfqa",
        help="The name of the dataset to use (via the datasets library).",
    )

    parser.add_argument(
        "--per_device_train_batch_size",
        type=int,
        default=4,
    )

    parser.add_argument(
        "--per_device_eval_batch_size",
        type=int,
        default=4,
        help="Batch size (per device) for the evaluation dataloader.",
    )

    parser.add_argument(
        "--pretrained_model_name",
        type=str,
        default="facebook/bart-large",
    )

    parser.add_argument(
        "--model_save_name",
        type=str,
        default="eli5_bart_model",
    )

    parser.add_argument(
        "--learning_rate",
        type=float,
        default=2e-4,
    )

    parser.add_argument(
        "--weight_decay",
        type=float,
        default=0.0,
        help="Weight decay to use."
    )

    parser.add_argument(
        "--log_freq",
        type=int,
        default=100,
        help="Log train/validation loss every log_freq update steps"
    )

    parser.add_argument(
        "--ignore_pad_token_for_loss",
        type=bool,
        default=True,
        help="Whether to ignore the tokens corresponding to " "padded labels in the loss computation or not.",
    )

    parser.add_argument(
        "--num_train_epochs",
        type=int,
        default=3,
    )

    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
    )

    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=16,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )

    parser.add_argument(
        "--pad_to_max_length",
        action="store_true",
        help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
    )

    parser.add_argument(
        "--overwrite_cache", type=bool, default=None, help="Overwrite the cached training and evaluation sets"
    )

    parser.add_argument(
        "--max_source_length",
        type=int,
        default=1024,
        help="The maximum total input sequence length after "
             "tokenization.Sequences longer than this will be truncated, sequences shorter will be padded.",
    )

    parser.add_argument(
        "--max_target_length",
        type=int,
        default=360,
        help="The maximum total sequence length for target text after "
             "tokenization. Sequences longer than this will be truncated, sequences shorter will be padded."
    )

    parser.add_argument(
        "--lr_scheduler_type",
        type=SchedulerType,
        default="linear",  # this is linear with warmup
        help="The scheduler type to use.",
        choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
    )

    parser.add_argument(
        "--num_warmup_steps",
        type=int,
        default=None,
        help="Number of steps for the warmup in the lr scheduler."
    )

    parser.add_argument(
        "--warmup_percentage",
        type=float,
        default=0.08,
        help="Number of steps for the warmup in the lr scheduler."
    )
    return parser


def cleanup_references(text):
    # URL reference where we need to remove both the link text and URL
    # ...and this letter is used by most biographers as the cornerstone of Lee's personal
    # views on slavery ([1](_URL_2_ & pg=PA173), [2](_URL_1_), [3](_URL_5_)).
    # ...and this letter is used by most biographers as the cornerstone of Lee's personal views on slavery.
    result = re.sub(r"[\(\s]*\[\d+\]\([^)]+\)[,)]*", "", text, 0, re.MULTILINE)

    # URL reference where we need to preserve link text but remove URL
    # At the outbreak of the Civil War, [Leyburn left his church](_URL_19_) and joined the South.
    # At the outbreak of the Civil War, Leyburn left his church and joined the South.
    result = re.sub(r"\[([^]]+)\]\([^)]+\)", "\\1", result, 0, re.MULTILINE)

    # lastly remove just dangling _URL_[0-9]_ URL references
    result = re.sub(r"_URL_\d_", "", result, 0, re.MULTILINE)
    return result


def clean_answer(text):
    result = cleanup_references(text)
    result = result.replace("\n", " ")
    result = re.sub(r"\s\s+", " ", result)
    result = re.sub(r"BULLET::::-", "", result)
    return result.strip()


def clean_question(text):
    result = cleanup_references(text)
    result = result.replace("\n", " ")
    result = re.sub(r"\s\s+", " ", result)
    result = result.replace("[deleted]", "")
    return result.lower().strip()


def prepare_support_docs(example):
    provenances = example["output"][-1]["provenance"]
    context = "<P> " + " <P> ".join([p["text"] for p in provenances])
    return {"context": context}


def preprocess_eli5(examples, **fn_kwargs):
    document_cache = fn_kwargs["document_cache"]
    training = fn_kwargs.get("training", True)
    extra_answer_threshold = fn_kwargs.get("extra_answer_threshold", 3)
    include_selftext = fn_kwargs.get("include_selftext", False)
    exclude_answer_patterns = fn_kwargs.get("exclude_answer_patterns", [])

    questions, contexts, answers = [], [], []
    for q_id, question, selftext, answer in zip(examples["q_id"], examples["title"], examples["selftext"],
                                                examples["answers"]):
        accepted_answer_idx = []
        if training:
            accepted_answer_idx = [idx for idx, score in enumerate(answer["score"]) if
                                   score > extra_answer_threshold]
        if not training or not accepted_answer_idx:
            accepted_answer_idx = [0]
        document = document_cache[q_id]
        for idx in accepted_answer_idx:
            skip_answer = any([p.search(answer["text"][idx]) for p in exclude_answer_patterns])
            if skip_answer:
                continue
            if include_selftext:
                questions.append(clean_question(f"{question} {selftext}"))
            else:
                questions.append(clean_question(question))
            contexts.append(document.lower().strip())
            answers.append(clean_answer(answer["text"][idx]))

    return {"question": questions, "context": contexts, "answer": answers}


def eval_qa_s2s_epoch(model, dataloader, accelerator, args):
    model.eval()
    num_eval_steps = math.ceil(len(dataloader))
    progress_bar = tqdm(range(num_eval_steps), disable=not accelerator.is_local_main_process)
    total_loss = 0.
    with torch.no_grad():
        for step, batch in enumerate(dataloader):
            outputs = model(**batch)
            loss = outputs.loss
            total_loss += loss.item()
            progress_bar.update(1)
            progress_bar.set_postfix(loss=round((total_loss / (step + 1)), 3))
        return total_loss / (step + 1)


def train(config):
    set_seed(42)
    args = config["args"]
    eli5 = load_dataset(args.dataset_name)

    support_docs = load_dataset("vblagoje/lfqa_support_docs")

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    accelerator = Accelerator()
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
    logger.info(accelerator.state)

    tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name)
    model = AutoModelForSeq2SeqLM.from_pretrained(args.pretrained_model_name)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {
            "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
            "weight_decay": 0.0,
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, weight_decay=args.weight_decay)

    processed_datasets = {}
    support_docs_prepared = {}
    with accelerator.main_process_first():
        for split in ["train", "validation"]:
            support_docs_prepared[split] = support_docs[split].map(prepare_support_docs,
                                                                   batched=False,
                                                                   cache_file_name=f"./support_docs_{split}.arrow",
                                                                   load_from_cache_file=not args.overwrite_cache,
                                                                   desc="Preparing support docs",
                                                                   )
        column_names = eli5["train"].column_names
        for split in ["train", "validation"]:
            d_cache = dict([(e["id"], e["context"]) for e in tqdm(support_docs_prepared[split],
                                                                  desc=f"Adding support docs to LFQA {split}")])
            processed_datasets[split] = eli5[split].map(preprocess_eli5,
                                                        batched=True,
                                                        remove_columns=column_names,
                                                        cache_file_name=f"./processed_datasets_{split}.arrow",
                                                        load_from_cache_file=not args.overwrite_cache,
                                                        desc="Preparing dataset for tokenization",
                                                        fn_kwargs={"document_cache": d_cache,
                                                                   "training": split == "train",
                                                                   "exclude_answer_patterns": [re.compile("not sure what you"),
                                                                                               re.compile("\n\n >")]}
                                                        )

    padding = "max_length" if args.pad_to_max_length else False
    # Temporarily set max_target_length for training.
    max_target_length = args.max_target_length

    label_pad_token_id = -100 if args.ignore_pad_token_for_loss else tokenizer.pad_token_id

    def tokenize_dataset(examples):
        inputs = ["question: {} context: {}".format(q, c) for q, c in zip(examples["question"], examples["context"])]
        targets = examples["answer"]
        model_inputs = tokenizer(inputs, max_length=args.max_source_length, padding=padding, truncation=True)

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets, max_length=max_target_length, padding=True, truncation=True,
                               return_tensors="np")

        model_inputs["decoder_input_ids"] = labels["input_ids"][:, :-1].tolist()
        # replace pad_token_id with label_pad_token_id to avoid loss calculation on those tokens
        labels["input_ids"] = np.where(labels["input_ids"] == tokenizer.pad_token_id,
                                       label_pad_token_id, labels["input_ids"])

        model_inputs["labels"] = labels["input_ids"][:, 1:].tolist()
        return model_inputs

    tokenized_datasets = {}
    with accelerator.main_process_first():
        for split, dataset in processed_datasets.items():
            tokenized_datasets[split] = dataset.map(
                tokenize_dataset,
                batched=True,
                cache_file_name=f"./tokenized_dataset_{split}.arrow",
                remove_columns=dataset.column_names,
                load_from_cache_file=not args.overwrite_cache,
                desc="Running tokenizer on dataset"
            )

    train_dataset = tokenized_datasets["train"]
    eval_dataset = tokenized_datasets["validation"]
    train_dataset.set_format(type='torch')
    eval_dataset.set_format(type='torch')

    data_collator = DataCollatorWithPadding(tokenizer, "max_length")

    # first epoch we don't shuffle
    train_dataloader = DataLoader(train_dataset, shuffle=False, batch_size=args.per_device_train_batch_size,
                                  collate_fn=data_collator)
    eval_dataloader = DataLoader(eval_dataset, batch_size=args.per_device_eval_batch_size, collate_fn=data_collator)

    # train the model
    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(model, optimizer, train_dataloader,
                                                                              eval_dataloader)
    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    num_warmup_steps = args.num_warmup_steps if args.num_warmup_steps else math.ceil(args.max_train_steps *
                                                                                     args.warmup_percentage)
    scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )
    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num eval examples = {len(eval_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    logger.info(f"  Warmup steps = {num_warmup_steps}")
    logger.info(f"  Logging training progress every {args.log_freq} optimization steps")

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
    completed_steps = 0
    switched_train_dataloader = False
    for epoch in range(args.num_train_epochs):
        model.train()
        if epoch > 0 and not switched_train_dataloader:
            train_dataloader = DataLoader(train_dataset, batch_size=args.per_device_train_batch_size,
                                          shuffle=True, collate_fn=data_collator)
            train_dataloader = accelerator.prepare(train_dataloader)
            switched_train_dataloader = True

        for step, batch in enumerate(train_dataloader):
            outputs = model(**batch)
            loss = torch.mean(outputs.loss)
            accelerator.backward(loss)
            if ((step + 1) % args.gradient_accumulation_steps == 0) or (step + 1 == len(train_dataloader)):
                optimizer.step()
                scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                progress_bar.set_postfix(loss=round(loss.item(), 3))
                completed_steps += 1

            if completed_steps >= args.max_train_steps:
                break

            if step % (args.log_freq * args.gradient_accumulation_steps) == 0:
                validation_loss = eval_qa_s2s_epoch(model, eval_dataloader, accelerator, args)
                model.train()
                logger.info(f"Train loss {loss.item()} , validation loss {validation_loss}")
                if args.wandb and accelerator.is_local_main_process:
                    import wandb
                    wandb.log({"loss": loss.item(),
                               "lr": scheduler.get_last_lr()[0],
                               "validation_loss": validation_loss,
                               "completed_steps": completed_steps})

        logger.info("Saving model {}".format(args.model_save_name))
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        accelerator.save(unwrapped_model.state_dict(), "{}_{}.bin".format(args.model_save_name, epoch))

        # Calculating the validation loss over epoch
        validation_loss = eval_qa_s2s_epoch(model, eval_dataloader, accelerator, args)

        logger.info("Epoch: {}".format(epoch))
        logger.info("Validation loss: {}".format(validation_loss))


def main():
    parser = get_parser()
    parser.add_argument(
        "--wandb",
        action="store_true",
        help="If true, use W&B logging",
    )
    main_args, _ = parser.parse_known_args()
    config = {"args": main_args}
    if main_args.wandb:
        import wandb
        wandb.init(project="Bart_ELI5")
    train(config=config)


main()