import gradio as gr import spaces from transformers import AutoModel, AutoTokenizer import os import base64 import io import uuid import time import shutil from pathlib import Path import re import easyocr # OCR Model tokenizer = AutoTokenizer.from_pretrained('RufusRubin777/GOT-OCR2_0_CPU', trust_remote_code=True, device_map='cpu') model = AutoModel.from_pretrained('RufusRubin777/GOT-OCR2_0_CPU', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cpu', use_safetensors=True) model = model.eval().cpu() reader = easyocr.Reader(['hi']) UPLOAD_FOLDER = "./uploads" RESULTS_FOLDER = "./results" for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: if not os.path.exists(folder): os.makedirs(folder) def image_to_base64(image): buffered = io.BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode() # OCR Processing of the image uploaded by the user # @spaces.GPU def run_GOT(image,language): unique_id = str(uuid.uuid4()) image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png") shutil.copy(image, image_path) try: if language == "English": res = model.chat(tokenizer, image_path, ocr_type='ocr') return res elif language == "Hindi": res = reader.readtext(image) extracted_text = '' for x in res: extracted_text += x[1] + '\n' return extracted_text else: english_extraction = model.chat(tokenizer, image_path, ocr_type='ocr') hindi_extraction = reader.readtext(image) hindi_extract = '' for x in hindi_extraction: hindi_extract += x[1] + '\n' return english_extraction+'\n'+hindi_extract except Exception as e: return f"Error: {str(e)}", None finally: if os.path.exists(image_path): os.remove(image_path) # Search Functionality def search_keyword(text,keyword): # Convert text and keyword to lowercase for case-insensitive search text_lower = text.lower() keyword_lower = keyword.lower() # Keyword position in the text pos = text_lower.find(keyword_lower) if pos == -1: ans = '
Scan Master uses General OCR Theory (GOT), a 580M end-to-end OCR 2.0 model for English optical character recognition and EASYOCR for Hindi optical character recognition. It supports plain text ocr.
""" # acknowledgement_html = """ #Name : Satvik Chandrakar
# [🌟 GitHub] """ # Scan Master web application developed using Gradio with gr.Blocks() as scan_master_web_app: gr.HTML(title_html) gr.Markdown(""" You need to upload your image below and choose appropriate language, then click "Submit" to run the model. More characters will result in longer wait times.""") with gr.Row(): with gr.Column(): image_input = gr.Image(type="filepath", label="Upload your image") gr.Markdown("""If your image contains only English text, then choose English option in the language. If it contains only Hindi text, then choose Hindi option in the language. If it contains both the language, then choose the third option.""") lang_dropdown = gr.Dropdown( choices=[ "English", "Hindi", "English + Hindi", ], label="Choose language", value="English" ) submit_button = gr.Button("Submit") with gr.Column(): ocr_result = gr.Textbox(label="GOT output") with gr.Row(): with gr.Column(): keyword = gr.Textbox(label="Search a keyword in the extracted text") search_button = gr.Button("Search") with gr.Column(): search_result = gr.HTML(label="Search result") # gr.HTML(acknowledgement_html) # gr.HTML(aboutme_html) submit_button.click( run_GOT, inputs=[image_input,lang_dropdown], outputs=[ocr_result] ) search_button.click( search_keyword, inputs=[ocr_result,keyword], outputs=[search_result] ) if __name__ == "__main__": cleanup_old_files() scan_master_web_app.launch()