Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import json | |
from byaldi import RAGMultiModalModel | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import torch | |
# Load models | |
def load_models(): | |
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali") | |
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", | |
trust_remote_code=True, torch_dtype=torch.float32) # float32 for CPU | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) | |
return RAG, model, processor | |
RAG, model, processor = load_models() | |
# Function for OCR and search | |
def ocr_and_search(image, keyword): | |
text_query = "Extract all the text in Sanskrit and English from the image." | |
# Prepare message for Qwen model | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": text_query}, | |
], | |
} | |
] | |
# Process the image | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
).to("cpu") # Use CPU | |
# Generate text | |
with torch.no_grad(): | |
generated_ids = model.generate(**inputs, max_new_tokens=2000) | |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
extracted_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
)[0] | |
# Save extracted text to JSON | |
output_json = {"query": text_query, "extracted_text": extracted_text} | |
# json_output = json.dumps(output_json, ensure_ascii=False, indent=4) | |
print(extracted_text) | |
# Perform keyword search | |
keyword_lower = keyword.lower() | |
sentences = extracted_text.split('. ') | |
matched_sentences = [sentence for sentence in sentences if keyword_lower in sentence.lower()] | |
print(matched_sentences) | |
return extracted_text, matched_sentences #, json_output | |
# Gradio App | |
def app(image, keyword): | |
extracted_text, search_results = ocr_and_search(image, keyword) | |
search_results_str = "\n".join(search_results) if search_results else "No matches found." | |
return extracted_text, search_results_str #, json_output | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=app, | |
inputs=[ | |
gr.Image(type="pil", label="Upload an Image"), | |
gr.Textbox(label="Enter keyword to search in extracted text", placeholder="Keyword") | |
], | |
outputs=[ | |
gr.Textbox(label="Extracted Text"), | |
gr.Textbox(label="Search Results"), | |
# gr.JSON(label="JSON Output") | |
], | |
title="OCR and Keyword Search in Images", | |
) | |
# Launch Gradio App | |
iface.launch() |