Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import json
|
4 |
+
from byaldi import RAGMultiModalModel
|
5 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
6 |
+
from qwen_vl_utils import process_vision_info
|
7 |
+
import torch
|
8 |
+
|
9 |
+
# Load models
|
10 |
+
def load_models():
|
11 |
+
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
|
12 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
|
13 |
+
trust_remote_code=True, torch_dtype=torch.float32) # float32 for CPU
|
14 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
|
15 |
+
return RAG, model, processor
|
16 |
+
|
17 |
+
RAG, model, processor = load_models()
|
18 |
+
|
19 |
+
# Function for OCR and search
|
20 |
+
def ocr_and_search(image, keyword):
|
21 |
+
|
22 |
+
text_query = "Extract all the text in Sanskrit and English from the image."
|
23 |
+
|
24 |
+
# Prepare message for Qwen model
|
25 |
+
messages = [
|
26 |
+
{
|
27 |
+
"role": "user",
|
28 |
+
"content": [
|
29 |
+
{"type": "image", "image": image},
|
30 |
+
{"type": "text", "text": text_query},
|
31 |
+
],
|
32 |
+
}
|
33 |
+
]
|
34 |
+
|
35 |
+
# Process the image
|
36 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
37 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
38 |
+
inputs = processor(
|
39 |
+
text=[text],
|
40 |
+
images=image_inputs,
|
41 |
+
videos=video_inputs,
|
42 |
+
padding=True,
|
43 |
+
return_tensors="pt",
|
44 |
+
).to("cpu") # Use CPU
|
45 |
+
|
46 |
+
# Generate text
|
47 |
+
with torch.no_grad():
|
48 |
+
generated_ids = model.generate(**inputs, max_new_tokens=2000)
|
49 |
+
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
50 |
+
extracted_text = processor.batch_decode(
|
51 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
52 |
+
)[0]
|
53 |
+
|
54 |
+
# Save extracted text to JSON
|
55 |
+
output_json = {"query": text_query, "extracted_text": extracted_text}
|
56 |
+
json_output = json.dumps(output_json, ensure_ascii=False, indent=4)
|
57 |
+
|
58 |
+
# Perform keyword search
|
59 |
+
keyword_lower = keyword.lower()
|
60 |
+
sentences = extracted_text.split('. ')
|
61 |
+
matched_sentences = [sentence for sentence in sentences if keyword_lower in sentence.lower()]
|
62 |
+
|
63 |
+
return extracted_text, matched_sentences, json_output
|
64 |
+
|
65 |
+
|
66 |
+
# Gradio App
|
67 |
+
def app(image, keyword):
|
68 |
+
|
69 |
+
extracted_text, search_results, json_output = ocr_and_search(image, keyword)
|
70 |
+
|
71 |
+
search_results_str = "\n".join(search_results) if search_results else "No matches found."
|
72 |
+
|
73 |
+
return extracted_text, search_results_str, json_output
|
74 |
+
|
75 |
+
# Gradio Interface
|
76 |
+
iface = gr.Interface(
|
77 |
+
fn=app,
|
78 |
+
inputs=[
|
79 |
+
gr.Image(type="pil", label="Upload an Image"),
|
80 |
+
gr.Textbox(label="Enter keyword to search in extracted text", placeholder="Keyword")
|
81 |
+
],
|
82 |
+
outputs=[
|
83 |
+
gr.Textbox(label="Extracted Text"),
|
84 |
+
gr.Textbox(label="Search Results"),
|
85 |
+
gr.JSON(label="JSON Output")
|
86 |
+
],
|
87 |
+
title="OCR and Keyword Search in Images",
|
88 |
+
)
|
89 |
+
|
90 |
+
# Launch Gradio App
|
91 |
+
iface.launch()
|