import gradio as gr from PIL import Image import json from byaldi import RAGMultiModalModel from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import torch import re # Load models def load_models(): RAG = RAGMultiModalModel.from_pretrained("vidore/colpali") model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.float32) # float32 for CPU processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) return RAG, model, processor RAG, model, processor = load_models() # Function for OCR def extract_text_from_image(image): text_query = "Extract all the text in Sanskrit and English from the image." # Prepare message for Qwen model messages = [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": text_query} ] } ] # Process the image text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt" ).to("cpu") # Use CPU # Generate text with torch.no_grad(): generated_ids = model.generate(**inputs, max_new_tokens=2000) generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] extracted_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] return extracted_text # Function for keyword search def search_keyword_in_text(extracted_text, keyword): keyword_lower = keyword.lower() sentences = extracted_text.split('. ') matched_sentences = [] for sentence in sentences: if keyword_lower in sentence.lower(): highlighted_sentence = re.sub(f'({re.escape(keyword)})', r'\1', sentence, flags=re.IGNORECASE) matched_sentences.append(highlighted_sentence) return matched_sentences if matched_sentences else ["No matches found."] # Gradio App def app_extract_text(image): extracted_text = extract_text_from_image(image) return extracted_text def app_search_keyword(extracted_text, keyword): search_results = search_keyword_in_text(extracted_text, keyword) search_results_str = "
".join(search_results) return search_results_str title_html = """

IIT Roorkee - OCR and Document Search Web Application Prototype (ColPali implementation of the new Byaldi library + Huggingface transformers for Qwen2-VL.)

""" # Gradio Interface with gr.Blocks() as iface: gr.HTML(title_html) with gr.Row(): with gr.Column(): image_input = gr.Image(type="pil", label="Upload an Image") extract_button = gr.Button("Extract Text") extracted_text_output = gr.Textbox(label="Extracted Text") extract_button.click(app_extract_text, inputs=image_input, outputs=extracted_text_output) with gr.Column(): keyword_input = gr.Textbox(label="Enter keyword to search in extracted text", placeholder="Keyword") search_button = gr.Button("Search Keyword") search_results_output = gr.HTML(label="Search Results") search_button.click(app_search_keyword, inputs=[extracted_text_output, keyword_input], outputs=search_results_output) # Launch Gradio App iface.launch()