import gradio as gr
from PIL import Image
import json
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import re
# Load models
def load_models():
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.float32) # float32 for CPU
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
return RAG, model, processor
RAG, model, processor = load_models()
# Global variable to store extracted text
extracted_text_global = ""
# Function for OCR extraction
def extract_text(image):
global extracted_text_global
text_query = "Extract all the text in Sanskrit and English from the image."
# Prepare message for Qwen model
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text_query},
],
}
]
# Process the image
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt"
).to("cpu") # Use CPU
# Generate text
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=2000)
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
extracted_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
# Store extracted text in global variable
extracted_text_global = extracted_text
return extracted_text
# Function for keyword search within extracted text
def search_keyword(keyword):
global extracted_text_global
if not extracted_text_global:
return "No extracted text available. Please extract text first.", "No matches found."
keyword_lower = keyword.lower()
sentences = extracted_text_global.split('. ')
matched_sentences = []
# Perform keyword search with highlighting
for sentence in sentences:
if keyword_lower in sentence.lower():
highlighted_sentence = re.sub(
f'({re.escape(keyword)})',
r'\1', # Highlight the matched keyword
sentence,
flags=re.IGNORECASE
)
matched_sentences.append(highlighted_sentence)
search_results_str = "
".join(matched_sentences) if matched_sentences else "No matches found."
return extracted_text_global, search_results_str
# Gradio App
def app_extract(image):
extracted_text = extract_text(image)
return extracted_text
def app_search(keyword):
extracted_text, search_results = search_keyword(keyword)
return extracted_text, search_results
# Gradio Interface with two buttons
iface = gr.Interface(
fn=[app_extract, app_search],
inputs=[
gr.Image(type="pil", label="Upload an Image"),
gr.Textbox(label="Enter keyword to search in extracted text", placeholder="Keyword")
],
outputs=[
gr.Textbox(label="Extracted Text"),
gr.HTML(label="Search Results"),
],
title="OCR and Keyword Search in Images",
live=False,
description="First, extract the text from an image, then search for a keyword in the extracted text.",
layout="vertical",
allow_flagging="never"
)
# Create separate buttons
extract_button = gr.Button("Extract Text")
search_button = gr.Button("Search Keyword")
# Link buttons to their respective functions
extract_button.click(fn=app_extract, inputs=[gr.Image(type="pil")], outputs=[gr.Textbox(label="Extracted Text")])
search_button.click(fn=app_search, inputs=[gr.Textbox(label="Enter keyword")], outputs=[gr.Textbox(label="Extracted Text"), gr.HTML(label="Search Results")])
# Launch Gradio App
iface.launch()