import gradio as gr from PIL import Image import json from byaldi import RAGMultiModalModel from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import torch import re # Load models def load_models(): RAG = RAGMultiModalModel.from_pretrained("vidore/colpali") model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.float32) # float32 for CPU processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) return RAG, model, processor RAG, model, processor = load_models() # Global variable to store extracted text extracted_text_global = "" # Function for OCR extraction def extract_text(image): global extracted_text_global text_query = "Extract all the text in Sanskrit and English from the image." # Prepare message for Qwen model messages = [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": text_query}, ], } ] # Process the image text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt" ).to("cpu") # Use CPU # Generate text with torch.no_grad(): generated_ids = model.generate(**inputs, max_new_tokens=2000) generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] extracted_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] # Store extracted text in global variable extracted_text_global = extracted_text return extracted_text # Function for keyword search within extracted text def search_keyword(keyword): global extracted_text_global if not extracted_text_global: return "No extracted text available. Please extract text first.", "No matches found." keyword_lower = keyword.lower() sentences = extracted_text_global.split('. ') matched_sentences = [] # Perform keyword search with highlighting for sentence in sentences: if keyword_lower in sentence.lower(): highlighted_sentence = re.sub( f'({re.escape(keyword)})', r'\1', # Highlight the matched keyword sentence, flags=re.IGNORECASE ) matched_sentences.append(highlighted_sentence) search_results_str = "
".join(matched_sentences) if matched_sentences else "No matches found." return extracted_text_global, search_results_str # Gradio App def app_extract(image): extracted_text = extract_text(image) return extracted_text def app_search(keyword): extracted_text, search_results = search_keyword(keyword) return extracted_text, search_results # Gradio Interface with two buttons iface = gr.Interface( fn=[app_extract, app_search], inputs=[ gr.Image(type="pil", label="Upload an Image"), gr.Textbox(label="Enter keyword to search in extracted text", placeholder="Keyword") ], outputs=[ gr.Textbox(label="Extracted Text"), gr.HTML(label="Search Results"), ], title="OCR and Keyword Search in Images", live=False, description="First, extract the text from an image, then search for a keyword in the extracted text.", layout="vertical", allow_flagging="never" ) # Create separate buttons extract_button = gr.Button("Extract Text") search_button = gr.Button("Search Keyword") # Link buttons to their respective functions extract_button.click(fn=app_extract, inputs=[gr.Image(type="pil")], outputs=[gr.Textbox(label="Extracted Text")]) search_button.click(fn=app_search, inputs=[gr.Textbox(label="Enter keyword")], outputs=[gr.Textbox(label="Extracted Text"), gr.HTML(label="Search Results")]) # Launch Gradio App iface.launch()