import gradio as gr from PIL import Image import json from byaldi import RAGMultiModalModel from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import torch # Load models def load_models(): RAG = RAGMultiModalModel.from_pretrained("vidore/colpali") model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.float32) # float32 for CPU processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) return RAG, model, processor RAG, model, processor = load_models() # Function for OCR and search def ocr_and_search(image, keyword): text_query = "Extract all the text in Sanskrit and English from the image." # Prepare message for Qwen model messages = [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": text_query}, ], } ] # Process the image text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ).to("cpu") # Use CPU # Generate text with torch.no_grad(): generated_ids = model.generate(**inputs, max_new_tokens=2000) generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] extracted_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] # Save extracted text to JSON output_json = {"query": text_query, "extracted_text": extracted_text} # json_output = json.dumps(output_json, ensure_ascii=False, indent=4) gr.Textbox(label= extracted_text) # Perform keyword search keyword_lower = keyword.lower() sentences = extracted_text.split('. ') matched_sentences = [sentence for sentence in sentences if keyword_lower in sentence.lower()] gr.Textbox(label= matched_sentences) return extracted_text, matched_sentences #, json_output # Gradio App def app(image, keyword): extracted_text, search_results = ocr_and_search(image, keyword) search_results_str = "\n".join(search_results) if search_results else "No matches found." return extracted_text, search_results_str #, json_output # Gradio Interface iface = gr.Interface( fn=app, inputs=[ gr.Image(type="pil", label="Upload an Image"), gr.Textbox(label="Enter keyword to search in extracted text", placeholder="Keyword") ], outputs=[ gr.Textbox(label="Extracted Text"), gr.Textbox(label="Search Results"), # gr.JSON(label="JSON Output") ], title="OCR and Keyword Search in Images", ) # Launch Gradio App iface.launch()