File size: 11,245 Bytes
2225ea4 c409946 2225ea4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
"""empirical parameter calculator, includes calculation functions for 14 values:
'Enthalpy(kJ/mol)', 'std_enthalpy(kJ/mol)', 'average_atomic_radius', 'Delta(%)', 'Omega', 'Entropy(J/K*mol)', 'Tm(K)',
'std_Tm (%)', 'X', 'std_X(%)', 'VEC', 'std_VEC', 'Density(g/com^3)', 'Price(USD/kg)'
written by Will Nash and Zhipeng Li
version 2.1.1"""
import itertools
import numpy as np
from pip._internal import main
# main(['install', 'joblib'])
main(['install', 'matminer'])
import matminer.utils.data as mm_data
# the market price for most chemical elements, these data are retrieved from
# http://www.leonland.de/elements_by_price/en/list
price_dic = {
"Ag": 462, "Al": 1.91, "Au": 38189, "B": 2386, "Be": 831.6, "Bi": 10.34, "C": 24, "Ca": 5.93, "Cd": 1.98, "Ce": 7,
"Co": 59.5, "Cr": 7.64, "Cu": 5.9, "Dy": 350, "Er": 95, "Fe": 0.08, "Gd": 55, "Ge": 1833, "Hf": 1414, "Ho": 1400,
"In": 341.6, "Ir": 31186, "La": 7, "Li": 115.7, "Lu": 6269, "Mg": 2.26, "Mn": 2.06, "Mo": 16, "Nb": 42, "Nd": 60,
"Ni": 9.19, "Os": 12860, "P": 300, "Pb": 2.29, "Pd": 34401, "Pr": 85, "Pt": 26492, "Re": 1635, "Rh": 76840,
"Ru": 14720, "Sb": 7.05, "Sc": 15000, "Si": 1.91, "Sm": 14.35, "Sn": 20, "Sr": 5.4, "Ta": 238, "Tb": 550,
"Ti": 3.77, "Tm": 6200, "V": 22.6, "W": 25.52, "Y": 35, "Yb": 1600, "Zn": 2.83, "Zr": 23.14, "H": 23.64,
"He": 40.39, "N": 2.77, "O": 0.64, "F": 1900, "Ne": 629.9, "Na": 3.04, "S": 0.1, "Cl": 1.5, "Ar": 2.56, "K": 13.02,
"Ga": 278.2, "As": 1.74, "Se": 30.37, "Br": 4.4, "Kr": 1.4, "Rb": 14720, "Te": 55.68, "I": 28.00,
"Xe": 9.2, "Cs": 73400, "Ba": 550, "Eu": 258, "Hg": 38.44, "Tl": 7400, "Th": 176, "U": 57.76,
}
class EmpiricalParams(object):
"""functions for returning the empirical parameters of alloy compositions where element list is a list of pymatgen
Elements that are in the alloy, and mol_ratio is their respective mole ratios """
def __init__(self, element_list, mol_ratio=None):
self.element_list = element_list
if mol_ratio is None: # assume that mol_ratio is evenly distributed amongst elements
mol_ratio = [1 / len(element_list)] * len(element_list)
self.mol_ratio = np.divide(mol_ratio, np.sum(mol_ratio))
self.a = self.mean_atomic_radius()
self.delta = self.atomic_size_difference()
self.Tm = self.average_melting_point()
self.mix_entropy = self.entropy_mixing()
self.mix_enthalpy = self.enthalpy_mixing()
self.omega = self.calc_omega()
self.x = self.mean_electronegativity()
self.std_x = self.std_electronegativity()
self.vec = self.average_vec()
self.density = self.calc_density()
self.price = self.calc_price()
# self.k = self.mean_bulk_modulus()
# self.std_k = self.std_bulk_modulus()
self.std_enthalpy = self.std_enthalpy_mixing()
self.std_Tm = self.std_melting_point()
self.vec_std = self.std_vec()
'''
2. average atomic radius
'''
def mean_atomic_radius(self):
"""function to return the mean atomic size radius 平均原子尺寸半径 (a) of the alloy"""
radii = []
for i in range(len(self.element_list)):
radii.append(self.element_list[i].atomic_radius)
avg_radii = np.dot(radii, self.mol_ratio)
return avg_radii
'''
3. atomic size difference
'''
def atomic_size_difference(self):
"""function to return the atomic size difference 原子半径差比率 (delta) of the alloy"""
delta = 0
radii = []
for i in range(len(self.element_list)):
radii.append(self.element_list[i].atomic_radius)
for j in range(len(self.element_list)):
delta += self.mol_ratio[j] * np.square((1 - np.divide(radii[j], self.a)))
return np.sqrt(delta)
'''
6. average melting point
'''
def average_melting_point(self):
"""function to return the average melting point 熔点的均值 (Tm) of the alloy"""
Tm = 0
for i in range(len(self.element_list)):
Tm += self.mol_ratio[i] * self.element_list[i].melting_point
return Tm
'''
7. standard melting point
'''
def std_melting_point(self):
"""function to return the standard deviation (in percentage) of melting points 熔点的标准偏差 (sigma_t) of the alloy"""
sigma_t = 0
T = []
for i in range(len(self.element_list)):
T.append(self.element_list[i].melting_point)
for j in range(len(self.element_list)):
sigma_t += self.mol_ratio[j] * np.square((1 - np.divide(T[j], self.Tm)))
return np.sqrt(sigma_t)
'''
1. entropy of mixing
'''
def entropy_mixing(self):
"""function to return entropy of mixing 混合熵 for alloy elements based on Boltzmann's hypothesis"""
entropy = 0
for i in range(len(self.mol_ratio)):
if self.mol_ratio[i] > 0:
entropy += self.mol_ratio[i] * np.log(self.mol_ratio[i])
return -8.31446261815324 * entropy
'''
4. enthalpy of mixing
'''
def enthalpy_mixing(self):
"""function to return the sum enthalpy of mixing 混合焓和 of an alloy system based on binary mixtures and the molar
ratio """
enthalpies = []
mol_coefficients = []
for pair in itertools.combinations(self.element_list, 2):
enthalpies.append(mm_data.MixingEnthalpy().get_mixing_enthalpy(*pair))
for molies in itertools.combinations(self.mol_ratio, 2):
mol_coefficients.append(4 * np.product(molies))
enthalpy = np.dot(enthalpies, mol_coefficients)
return enthalpy
'''
5. standard deviation of enthalpy
'''
def std_enthalpy_mixing(self):
"""function to return the standard deviation of enthalpy of mixing 混合焓的标准偏差 (sigma_h) of the alloy"""
sigma_h = 0
H = np.zeros((len(self.element_list), len(self.element_list)))
for i in range(len(self.element_list)):
for j in range(len(self.element_list)):
if i != j:
H[i][j] = mm_data.MixingEnthalpy().get_mixing_enthalpy(self.element_list[i], self.element_list[j])
for i in range(len(self.element_list)):
for j in range(len(self.element_list)):
if i != j:
sigma_h += self.mol_ratio[i] * self.mol_ratio[j] * np.square(H[i][j] - self.enthalpy_mixing())
sigma_h = sigma_h / 2
return np.sqrt(sigma_h)
'''
12. Omega omega
'''
def calc_omega(self):
"""function to return the omega value of the alloy"""
if np.abs(self.mix_enthalpy) < 1e-6:
self.mix_enthalpy = 1e-6
return self.Tm * self.mix_entropy / (np.abs(self.mix_enthalpy) * 1000)
'''
8. average electronegativity
'''
def mean_electronegativity(self):
"""function to return the mean electronegativity 电负性的均值 (x) of the alloy"""
x_list = []
for i in range(len(self.element_list)):
x_list.append(self.element_list[i].X)
x_avg = np.dot(x_list, self.mol_ratio)
return x_avg
'''
9. standard deviation of electronegativity
'''
def std_electronegativity(self):
"""function to return the standard deviation (in percentage) of electronegativity 电负性的标准偏差 (sigma_x) of the alloy"""
sigma_x = 0
x_list = []
for i in range(len(self.element_list)):
x_list.append(self.element_list[i].X)
for j in range(len(self.element_list)):
sigma_x += self.mol_ratio[j] * np.square(x_list[j] - self.x)
return np.sqrt(sigma_x) / self.x
'''
10. valence electron concentration
'''
def num_ve(self, element):
"""function to return the number of valence electron of the element元素的价电子"""
e_structure = element.full_electronic_structure
outer = element.full_electronic_structure[-1][0]
num_e = 0
for t in e_structure:
if t[0] == outer - 1 and t[1] == 'd':
num_e += t[2]
if t[0] == outer:
num_e += t[2]
return num_e
'''
average of valence electron concentration
'''
def average_vec(self):
"""function to return the average of valence electron concentration 价电子浓度的均值 (vec) of the alloy"""
vec = 0
for i in range(len(self.element_list)):
vec += self.mol_ratio[i] * self.num_ve(self.element_list[i])
return vec
'''
11. standard deviation of valence electron concentration
'''
def std_vec(self):
"""function to return the standard deviation of valence electron concentration 价电子浓度的标准偏差 (sigma_vec) of the alloy"""
sigma_vec = 0
vec_list = []
for i in range(len(self.element_list)):
vec_list.append(self.num_ve(self.element_list[i]))
for j in range(len(self.element_list)):
sigma_vec += self.mol_ratio[j] * np.square(vec_list[j] - self.vec)
return np.sqrt(sigma_vec)
'''
average of bulk modulus
'''
def mean_bulk_modulus(self):
"""function to return the average of bulk modulus (k)体积弹性模量 of the alloy"""
k = 0
for i in range(len(self.element_list)):
if self.element_list[i].bulk_modulus is None:
print(self.element_list[i])
else:
k += self.mol_ratio[i] * self.element_list[i].bulk_modulus
return k
'''
standard deviation of bulk modulus
'''
def std_bulk_modulus(self):
"""function to return the standard deviation of bulk modulus (k)体积弹性模量 of the alloy"""
sigma_k = 0
k_list = []
for i in range(len(self.element_list)):
k_list.append(self.element_list[i].bulk_modulus)
for j in range(len(self.element_list)):
if self.element_list[i].bulk_modulus is None:
print(self.element_list[i])
else:
sigma_k += self.mol_ratio[j] * np.square(k_list[j] - self.k)
return np.sqrt(sigma_k)
'''
13. density
'''
def calc_density(self):
"""function to return the density (g/cm^3) of the alloy"""
mass = 0
volume = 0
for i in range(len(self.element_list)):
mass += float(self.element_list[i].atomic_mass) * self.mol_ratio[i]
volume += self.mol_ratio[i] * self.element_list[i].molar_volume
return mass / volume
'''
14. price/element cost
'''
def calc_price(self):
"""function to return the price (USD/kg) of the alloy"""
total_mass = 0
total_price = 0
for i in range(len(self.element_list)):
if not str(self.element_list[i]) in price_dic:
return 'unknown'
mass = float(self.element_list[i].atomic_mass) * self.mol_ratio[i]
total_mass += mass
total_price += mass * price_dic[str(self.element_list[i])]
return format(total_price / total_mass, '.2f')
|