Ruijia Tan
commited on
Commit
•
834da3d
1
Parent(s):
834c937
Upload code.
Browse files
Model/saved_model/lr/compressive_strength.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:550f45334ed9f0e7a21bc7f480f195f18435e9272d3852bf0bfa2df9a9a344ce
|
3 |
-
size 937
|
|
|
|
|
|
|
|
Model/saved_model/lr/elongation.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e9fe4f2045e678c286b66e7271a927f6532ab35774f71dab2f3a823d8fc846bf
|
3 |
-
size 42049
|
|
|
|
|
|
|
|
Model/saved_model/lr/hardness.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:7fb61f94fc1e0becb7fc1125c54e21bb47e63658c49a2f4d685d5c759c962816
|
3 |
-
size 124771
|
|
|
|
|
|
|
|
Model/saved_model/lr/plasticity.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:2523c8f36729ef800a9a9caea6b02c0a049ac012e4ce690115831891247eb065
|
3 |
-
size 101525
|
|
|
|
|
|
|
|
Model/saved_model/lr/tensile_strength.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:caad1f7df03626cf820eb00ad032cefd90375544356488de3fb7f58071c880f6
|
3 |
-
size 44408
|
|
|
|
|
|
|
|
Model/saved_model/lr/yield_strength.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:05516385450822deb25cf0d963021b3eb41503970e07a38f651b57eb77a26780
|
3 |
-
size 54432
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -16,14 +16,6 @@ import joblib
|
|
16 |
'''
|
17 |
Get the path of all of the saved models.
|
18 |
'''
|
19 |
-
|
20 |
-
lr_compressive_strength = "./Model/saved_model/lr/compressive_strength.pkl"
|
21 |
-
lr_elongation = "./Model/saved_model/lr/elongation.pkl"
|
22 |
-
lr_hardness = "./Model/saved_model/lr/hardness.pkl"
|
23 |
-
lr_plasticity ="./Model/saved_model/lr/plasticity.pkl"
|
24 |
-
lr_tensile_strength ="./Model/saved_model/lr/tensile_strength.pkl"
|
25 |
-
lr_yield_strength ="./Model/saved_model/lr/yield_strength.pkl"
|
26 |
-
|
27 |
kmeans_ssl_compressive_strength = "./Model/saved_model/kmeans_ssl/compressive_strength.pkl"
|
28 |
kmeans_ssl_elongation = "./Model/saved_model/kmeans_ssl/elongation.pkl"
|
29 |
kmeans_ssl_hardness = "./Model/saved_model/kmeans_ssl/hardness.pkl"
|
@@ -91,17 +83,7 @@ def pred(Al, B, C, Co, Cr, Cu, Fe, Ga, Ge, Hf, Li, Mg, Mn, Mo, N, Nb, Ni, Sc, Si
|
|
91 |
# print(Composition)
|
92 |
# print(comp.values())
|
93 |
|
94 |
-
if operation=="
|
95 |
-
#Using RandomForest to predict properties.
|
96 |
-
Hardness = predict_input(lr_hardness).predict(df)
|
97 |
-
YieldStrength=predict_input(lr_yield_strength).predict(df)
|
98 |
-
TensileStrength=predict_input(lr_tensile_strength).predict(df)
|
99 |
-
Elongation=predict_input(lr_elongation).predict(df)
|
100 |
-
CompressiveStrength=predict_input(lr_compressive_strength).predict(df)
|
101 |
-
Plasticity=predict_input(lr_plasticity).predict(df)
|
102 |
-
# print("1")
|
103 |
-
|
104 |
-
elif operation=="K-Means Semi-supervisor Model":
|
105 |
#Using KNN & RandomForest to predict properties.
|
106 |
Hardness = predict_input(kmeans_ssl_hardness).predict(df)
|
107 |
YieldStrength = predict_input(kmeans_ssl_yield_strength).predict(df)
|
@@ -109,7 +91,6 @@ def pred(Al, B, C, Co, Cr, Cu, Fe, Ga, Ge, Hf, Li, Mg, Mn, Mo, N, Nb, Ni, Sc, Si
|
|
109 |
Elongation = predict_input(kmeans_ssl_elongation).predict(df)
|
110 |
CompressiveStrength = predict_input(kmeans_ssl_compressive_strength).predict(df)
|
111 |
Plasticity = predict_input(kmeans_ssl_plasticity).predict(df)
|
112 |
-
# print("2")
|
113 |
|
114 |
elif operation == "GMM Semi-supervisor Model":
|
115 |
# Using semi_supervisor Label Propagation to predict properties.
|
@@ -227,7 +208,7 @@ with gr.Blocks() as demo:
|
|
227 |
|
228 |
# The section to select the Machine Learning Model.
|
229 |
with gr.Row():
|
230 |
-
operation = gr.inputs.Radio(["
|
231 |
|
232 |
# The section to input the element ratio.
|
233 |
with gr.Row():
|
|
|
16 |
'''
|
17 |
Get the path of all of the saved models.
|
18 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
kmeans_ssl_compressive_strength = "./Model/saved_model/kmeans_ssl/compressive_strength.pkl"
|
20 |
kmeans_ssl_elongation = "./Model/saved_model/kmeans_ssl/elongation.pkl"
|
21 |
kmeans_ssl_hardness = "./Model/saved_model/kmeans_ssl/hardness.pkl"
|
|
|
83 |
# print(Composition)
|
84 |
# print(comp.values())
|
85 |
|
86 |
+
if operation=="K-Means Semi-supervisor Model":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
#Using KNN & RandomForest to predict properties.
|
88 |
Hardness = predict_input(kmeans_ssl_hardness).predict(df)
|
89 |
YieldStrength = predict_input(kmeans_ssl_yield_strength).predict(df)
|
|
|
91 |
Elongation = predict_input(kmeans_ssl_elongation).predict(df)
|
92 |
CompressiveStrength = predict_input(kmeans_ssl_compressive_strength).predict(df)
|
93 |
Plasticity = predict_input(kmeans_ssl_plasticity).predict(df)
|
|
|
94 |
|
95 |
elif operation == "GMM Semi-supervisor Model":
|
96 |
# Using semi_supervisor Label Propagation to predict properties.
|
|
|
208 |
|
209 |
# The section to select the Machine Learning Model.
|
210 |
with gr.Row():
|
211 |
+
operation = gr.inputs.Radio(["K-Means Semi-supervisor Model", "GMM Semi-supervisor Model"])
|
212 |
|
213 |
# The section to input the element ratio.
|
214 |
with gr.Row():
|