RuudVelo commited on
Commit
0788ae6
1 Parent(s): 093cd61

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -6
app.py CHANGED
@@ -1,12 +1,44 @@
1
  import streamlit as st
2
  from transformers import pipeline
3
 
4
- pipe = pipeline(model="RuudVelo/dutch_news_classifier_bert_finetuned")
5
- text = st.text_area('Please type/copy/paste the Dutch article')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
- labels = ['Binnenland' 'Buitenland' 'Cultuur & Media' 'Economie' 'Koningshuis'
8
- 'Opmerkelijk' 'Politiek' 'Regionaal nieuws' 'Tech']
 
 
9
 
10
  if text:
11
- out = pipe(text)
12
- st.json(out)
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  from transformers import pipeline
3
 
4
+ #pipe = pipeline(model="RuudVelo/dutch_news_classifier_bert_finetuned")
5
+ #text = st.text_area('Please type/copy/paste the Dutch article')
6
+
7
+ #labels = ['Binnenland' 'Buitenland' 'Cultuur & Media' 'Economie' 'Koningshuis'
8
+ # 'Opmerkelijk' 'Politiek' 'Regionaal nieuws' 'Tech']
9
+
10
+ #if text:
11
+ # out = pipe(text)
12
+ # st.json(out)
13
+
14
+
15
+ # load tokenizer and model, create trainer
16
+ #model_name = "RuudVelo/dutch_news_classifier_bert_finetuned"
17
+ #tokenizer = AutoTokenizer.from_pretrained(model_name)
18
+ #model = AutoModelForSequenceClassification.from_pretrained(model_name)
19
+ #trainer = Trainer(model=model)
20
+ #print(filename, type(filename))
21
+ #print(filename.name)
22
+
23
+ from transformers import BertForSequenceClassification, BertTokenizer
24
+
25
+ model = BertForSequenceClassification.from_pretrained("RuudVelo/dutch_news_classifier_bert_finetuned")
26
+ #from transformers import BertTokenizer
27
 
28
+ tokenizer = BertTokenizer.from_pretrained("RuudVelo/dutch_news_classifier_bert_finetuned")
29
+
30
+ #text = ["this is one sentence", "this is another sentence"]
31
+ text = st.text_area('Please type/copy/paste the Dutch article')
32
 
33
  if text:
34
+ encoding = tokenizer(text, return_tensors="pt")
35
+ outputs = model(**encoding)
36
+ predictions = outputs.logits.argmax(-1)
37
+ #out = pipe(text)
38
+ st.json(predictions)
39
+
40
+ #encoding = tokenizer(text, return_tensors="pt")
41
+
42
+ # forward pass
43
+ #outputs = model(**encoding)
44
+ #predictions = outputs.logits.argmax(-1)