Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,44 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
pipe = pipeline(model="RuudVelo/dutch_news_classifier_bert_finetuned")
|
5 |
-
text = st.text_area('Please type/copy/paste the Dutch article')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
9 |
|
10 |
if text:
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
#pipe = pipeline(model="RuudVelo/dutch_news_classifier_bert_finetuned")
|
5 |
+
#text = st.text_area('Please type/copy/paste the Dutch article')
|
6 |
+
|
7 |
+
#labels = ['Binnenland' 'Buitenland' 'Cultuur & Media' 'Economie' 'Koningshuis'
|
8 |
+
# 'Opmerkelijk' 'Politiek' 'Regionaal nieuws' 'Tech']
|
9 |
+
|
10 |
+
#if text:
|
11 |
+
# out = pipe(text)
|
12 |
+
# st.json(out)
|
13 |
+
|
14 |
+
|
15 |
+
# load tokenizer and model, create trainer
|
16 |
+
#model_name = "RuudVelo/dutch_news_classifier_bert_finetuned"
|
17 |
+
#tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
+
#model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
19 |
+
#trainer = Trainer(model=model)
|
20 |
+
#print(filename, type(filename))
|
21 |
+
#print(filename.name)
|
22 |
+
|
23 |
+
from transformers import BertForSequenceClassification, BertTokenizer
|
24 |
+
|
25 |
+
model = BertForSequenceClassification.from_pretrained("RuudVelo/dutch_news_classifier_bert_finetuned")
|
26 |
+
#from transformers import BertTokenizer
|
27 |
|
28 |
+
tokenizer = BertTokenizer.from_pretrained("RuudVelo/dutch_news_classifier_bert_finetuned")
|
29 |
+
|
30 |
+
#text = ["this is one sentence", "this is another sentence"]
|
31 |
+
text = st.text_area('Please type/copy/paste the Dutch article')
|
32 |
|
33 |
if text:
|
34 |
+
encoding = tokenizer(text, return_tensors="pt")
|
35 |
+
outputs = model(**encoding)
|
36 |
+
predictions = outputs.logits.argmax(-1)
|
37 |
+
#out = pipe(text)
|
38 |
+
st.json(predictions)
|
39 |
+
|
40 |
+
#encoding = tokenizer(text, return_tensors="pt")
|
41 |
+
|
42 |
+
# forward pass
|
43 |
+
#outputs = model(**encoding)
|
44 |
+
#predictions = outputs.logits.argmax(-1)
|