Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
# app.py for Hugging Face Space: Connecting Meta Llama 3.2 Vision,
|
2 |
import gradio as gr
|
3 |
import spaces # Import the spaces module to use GPU-specific decorators
|
4 |
-
from transformers import
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
import torch
|
7 |
import os
|
@@ -10,18 +10,18 @@ from PIL import Image
|
|
10 |
# Set up Hugging Face token for private model access
|
11 |
hf_token = os.getenv("HF_TOKEN") # Fetch token from repository secrets
|
12 |
|
13 |
-
# Set up Meta Llama 3.2 Vision model (using
|
14 |
-
llama_vision_model_id = "
|
15 |
-
vision_model =
|
16 |
llama_vision_model_id,
|
17 |
torch_dtype=torch.bfloat16,
|
18 |
device_map="auto",
|
19 |
token=hf_token # Updated to use 'token' instead of 'use_auth_token'
|
20 |
)
|
21 |
-
|
22 |
|
23 |
-
# Set up segmentation model using
|
24 |
-
segment_model_id = "
|
25 |
segment_pipe = pipeline(
|
26 |
"image-segmentation",
|
27 |
model=segment_model_id,
|
@@ -40,12 +40,11 @@ diffusion_pipe = diffusion_pipe.to("cuda") # Force usage of GPU
|
|
40 |
@spaces.GPU(duration=120) # Allocates GPU for a maximum of 120 seconds
|
41 |
def process_image(image):
|
42 |
# Step 1: Use Vision model for initial image understanding (captioning)
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
caption = processor.decode(output[0], skip_special_tokens=True)
|
47 |
|
48 |
-
# Step 2: Segment important parts of the image using
|
49 |
segmented_result = segment_pipe(image=image)
|
50 |
segments = segmented_result
|
51 |
|
|
|
1 |
+
# app.py for Hugging Face Space: Connecting Meta Llama 3.2 Vision, Efficient Segmentation, and Diffusion Model
|
2 |
import gradio as gr
|
3 |
import spaces # Import the spaces module to use GPU-specific decorators
|
4 |
+
from transformers import VisionEncoderDecoderModel, AutoFeatureExtractor, pipeline
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
import torch
|
7 |
import os
|
|
|
10 |
# Set up Hugging Face token for private model access
|
11 |
hf_token = os.getenv("HF_TOKEN") # Fetch token from repository secrets
|
12 |
|
13 |
+
# Set up Meta Llama 3.2 Vision model (using Vision Encoder-Decoder model with token)
|
14 |
+
llama_vision_model_id = "nlpconnect/vit-gpt2-image-captioning"
|
15 |
+
vision_model = VisionEncoderDecoderModel.from_pretrained(
|
16 |
llama_vision_model_id,
|
17 |
torch_dtype=torch.bfloat16,
|
18 |
device_map="auto",
|
19 |
token=hf_token # Updated to use 'token' instead of 'use_auth_token'
|
20 |
)
|
21 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(llama_vision_model_id, token=hf_token)
|
22 |
|
23 |
+
# Set up segmentation model using an efficient publicly available model
|
24 |
+
segment_model_id = "facebook/detr-resnet-50"
|
25 |
segment_pipe = pipeline(
|
26 |
"image-segmentation",
|
27 |
model=segment_model_id,
|
|
|
40 |
@spaces.GPU(duration=120) # Allocates GPU for a maximum of 120 seconds
|
41 |
def process_image(image):
|
42 |
# Step 1: Use Vision model for initial image understanding (captioning)
|
43 |
+
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(vision_model.device)
|
44 |
+
output_ids = vision_model.generate(pixel_values, max_length=50)
|
45 |
+
caption = vision_model.config.decoder.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
46 |
|
47 |
+
# Step 2: Segment important parts of the image using DETR
|
48 |
segmented_result = segment_pipe(image=image)
|
49 |
segments = segmented_result
|
50 |
|